8 research outputs found
Interaction of novel positive allosteric modulators of metabotropic glutamate receptor 5 with the negative allosteric antagonist site is required for potentiation of receptor responses.
International audienceExciting advances have been made in the discovery of selective positive allosteric modulators of the metabotropic glutamate receptor (mGluR) mGluR5. These compounds may provide a novel approach that could be useful in the treatment of certain central nervous system disorders. However, because of their low potencies, previously described mGluR5 potentiators are not useful for functional studies in native preparations. In addition, binding sites at which these compounds act have not been identified. It has been suggested that two allosteric potentiators, 3,3'-difluorobenzaldazine and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), act by binding to the same allosteric site as the negative allosteric modulators of mGluR5 such as 2-methyl-6-(phenylethynyl)pyridine (MPEP). However, another mGluR5 potentiator, N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)m-ethyl]phenyl}-2-hydroxybenzamide, does not bind to this site, bringing this hypothesis into question. We have synthesized a series of CDPPB analogs and report that these compounds bind to the MPEP site with affinities that are closely related to their potencies as mGluR5 potentiators. Furthermore, allosteric potentiation is antagonized by a neutral ligand at the MPEP site and reduced by a mutation of mGluR5 that eliminates MPEP binding. Together, these data suggest that interaction with the MPEP site is important for allosteric potentiation of mGluR5 by CDPPB and related compounds. In addition, whole-cell patch-clamp studies in midbrain slices reveal that a highly potent analog of CDPPB, 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU-29), selectively potentiates mGluR5 but not mGluR1-mediated responses in midbrain neurons, whereas a previously identified allosteric potentiator of mGluR1 has the opposite effect
Motoneuron Replacement for Reinnervation of Skeletal Muscle in Adult Rats
Reinnervation is needed to rescue muscle when motoneurons die in disease or injury. Embryonic ventral spinal cord cells transplanted into peripheral nerve reinnervate muscle and reduce atrophy but low motoneuron survival may limit motor unit formation. We tested whether transplantation of a purified population of embryonic motoneurons into peripheral nerve (mean ± SE: 146,458 ± 4011 motoneurons) resulted in more motor units and reinnervation than transplantation of a mixed population of ventral spinal cord cells (72,075 ± 12,329 motoneurons). Ten weeks after either kind of transplant, similar numbers of neurons expressed choline acetyl transferase and/or Islet-1. Motoneuron numbers always exceeded the reinnervated motor unit count. Most motor end plates were simple plaques. Reinnervation significantly reduced muscle fiber atrophy. These data show that the number of transplanted motoneurons or motoneuron survival do not limit muscle reinnervation. Incomplete differentiation of motoneurons in nerve and lack of muscle activity may result in immature neuromuscular junctions that limit reinnervation and function