223 research outputs found
Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation
Objective
Cystic fibrosis (CF), caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, continues to present diagnostic challenges. Newborn screening and an evolving understanding of CF genetics have prompted a reconsideration of the diagnosis criteria.
Study design
To improve diagnosis and achieve standardized definitions worldwide, the CF Foundation convened a committee of 32 experts in CF diagnosis from 9 countries to develop clear and actionable consensus guidelines on the diagnosis of CF and to clarify diagnostic criteria and terminology for other disorders associated with CFTR mutations. An a priori threshold of ≥80% affirmative votes was required for acceptance of each recommendation statement.
Results
After reviewing relevant literature, the committee convened to review evidence and cases. Following the conference, consensus statements were developed by an executive subcommittee. The entire consensus committee voted and approved 27 of 28 statements, 7 of which needed revisions and a second round of voting.
Conclusions
It is recommended that diagnoses associated with CFTR mutations in all individuals, from newborn to adult, be established by evaluation of CFTR function with a sweat chloride test. The latest mutation classifications annotated in the Clinical and Functional Translation of CFTR project (http://www.cftr2.org/index.php) should be used to aid in diagnosis. Newborns with a high immunoreactive trypsinogen level and inconclusive CFTR functional and genetic testing may be designated CFTR-related metabolic syndrome or CF screen positive, inconclusive diagnosis; these terms are now merged and equivalent, and CFTR-related metabolic syndrome/CF screen positive, inconclusive diagnosis may be used. International Statistical Classification of Diseases and Related Health Problems, 10th Revision codes for use in diagnoses associated with CFTR mutations are included
The p75 neurotrophin receptor is expressed by adult mouse dentate progenitor cells and regulates neuronal and non-neuronal cell genesis
<p>Abstract</p> <p>Background</p> <p>The ability to regulate neurogenesis in the adult dentate gyrus will require further identification and characterization of the receptors regulating this process. <it>In vitro </it>and <it>in vivo </it>studies have demonstrated that neurotrophins and the p75 neurotrophin receptor (p75<sup>NTR</sup>) can promote neurogenesis; therefore we tested the hypothesis that p75<sup>NTR </sup>is expressed by adult dentate gyrus progenitor cells and is required for their proliferation and differentiation.</p> <p>Results</p> <p>In a first series of studies focusing on proliferation, mice received a single BrdU injection and were sacrificed 2, 10 and 48 hours later. Proliferating, BrdU-positive cells were found to express p75<sup>NTR</sup>. In a second series of studies, BrdU was administered by six daily injections and mice were sacrificed 1 day later. Dentate gyrus sections demonstrated a large proportion of BrdU/p75<sup>NTR </sup>co-expressing cells expressing either the NeuN neuronal or GFAP glial marker, indicating that p75<sup>NTR </sup>expression persists at least until early stages of maturation. In p75<sup>NTR </sup>(-/-) mice, there was a 59% decrease in the number of BrdU-positive cells, with decreases in the number of BrdU cells co-labeled with NeuN, GFAP or neither marker of 35%, 60% and 64%, respectively.</p> <p>Conclusions</p> <p>These findings demonstrate that p75<sup>NTR </sup>is expressed by adult dentate progenitor cells and point to p75<sup>NTR </sup>as an important receptor promoting the proliferation and/or early maturation of not only neural, but also glial and other cell types.</p
NGF and proNGF Regulate Functionally Distinct mRNAs in PC12 Cells: An Early Gene Expression Profiling
The biological activities of NGF and of its precursor proNGF are quite distinct, due to different receptor binding profiles, but little is known about how proNGF regulates gene expression. Whether proNGF is a purely pro-apoptotic molecule and/or simply a “less potent NGF” is still a matter of debate. We performed experiments to address this question, by verifying whether a proNGF specific transcriptional signature, distinct from that of NGF, could be identified. To this aim, we studied gene expression regulation by proNGF and NGF in PC12 cells incubated for 1 and 4 hours with recombinant NGF and proNGF, in its wild-type or in a furin-cleavage resistant form. mRNA expression profiles were analyzed by whole genome microarrays at early time points, in order to identify specific profiles of NGF and proNGF. Clear differences between the mRNA profiles modulated by the three neurotrophin forms were identified. NGF and proNGF modulate remarkably distinct mRNA expression patterns, with the gene expression profile regulated by NGF being significantly more complex than that by proNGF, both in terms of the total number of differentially expressed mRNAs and of the gene families involved. Moreover, while the total number of genes modulated by NGF increases dramatically with time, that by proNGFs is unchanged or reduced. We identified a subset of regulated genes that could be ascribed to a “pure proNGF” signalling, distinct from the “pure NGF” one. We also conclude that the composition of mixed NGF and proNGF samples, when the two proteins coexist, influences the profile of gene expression. Based on this comparison of the gene expression profiles regulated by NGF and its proNGF precursor, we conclude that the two proteins activate largely distinct transcriptional programs and that the ratio of NGF to proNGF in vivo can profoundly influence the pattern of regulated mRNAs
Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab
This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 dataset of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency ωam are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary, because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to ω_{a}^{m} is 0.50±0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of ω_{a}^{m}
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision
Propofol-Induced Changes in Neurotrophic Signaling in the Developing Nervous System In Vivo
Several studies have revealed a role for neurotrophins in anesthesia-induced neurotoxicity in the developing brain. In this study we monitored the spatial and temporal expression of neurotrophic signaling molecules in the brain of 14-day-old (PND14) Wistar rats after the application of a single propofol dose (25 mg/kg i.p). The structures of interest were the cortex and thalamus as the primary areas of anesthetic actions. Changes of the protein levels of the brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), their activated receptors tropomyosin-related kinase (TrkA and TrkB) and downstream kinases Akt and the extracellular signal regulated kinase (ERK) were assessed by Western immunoblot analysis at different time points during the first 24 h after the treatment, as well as the expression of cleaved caspase-3 fragment. Fluoro-Jade B staining was used to follow the appearance of degenerating neurons. The obtained results show that the treatment caused marked alterations in levels of the examined neurotrophins, their receptors and downstream effector kinases. However, these changes were not associated with increased neurodegeneration in either the cortex or the thalamus. These results indicate that in the brain of PND14 rats, the interaction between Akt/ERK signaling might be one of important part of endogenous defense mechanisms, which the developing brain utilizes to protect itself from potential anesthesia-induced damage. Elucidation of the underlying molecular mechanisms will improve our understanding of the age-dependent component of anesthesia-induced neurotoxicity
Magnetic-field measurement and analysis for the Muon g − 2 Experiment at Fermilab
The Fermi National Accelerator Laboratory (FNAL) Muon g - 2 Experiment has measured the anomalous precession frequency a_{μ}(g_{μ} - 2)/2 of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7C. The measured field is weighted by the muon distribution resulting in \tilde{ω}'_{p}, the denominator in the ratio \tilde{ω}_{a}/\tilde{ω}'_{p} that together with known fundamental constants yields aμ. The reported uncertainty on \tilde{ω}'_{p} for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb
Small molecule activators of the Trk receptors for neuroprotection
The neurotophin signaling network is critical to the development and survival of many neuronal populations. Especially sensitive to imbalances in the neurotrophin system, cholinergic neurons in the basal forebrain are progressively lost in Alzheimer's disease. Therapeutic use of neurotrophins to prevent this loss is hampered, however, by a number of pharmacological challenges. These include a lack of transport across the blood-brain barrier, rapid degradation in the circulation, and difficulty in production. In this review we discuss the evidence supporting the neurotrophin system's role in preventing neurodegeneration and survey some of the pharmacological strategies being pursued to develop effective therapeutics targeting neurotrophin function
- …