387 research outputs found

    On the two-loop sbottom corrections to the neutral Higgs boson masses in the MSSM

    Full text link
    We compute the O(ab*as) two-loop corrections to the neutral Higgs boson masses in the Minimal Supersymmetric Standard Model, using the effective potential approach. Such corrections can be important in the region of parameter space corresponding to tan(beta)>>1 and sizeable mu. In spite of the formal analogy with the O(at*as) corrections, there are important differences, since the dominant effects are controlled by the sbottom-Higgs scalar couplings. We propose a convenient renormalization scheme that avoids unphysically large threshold effects associated with the bottom mass, and absorbs the bulk of the O(ab*as + ab*at) corrections into the one-loop expression. We give general explicit formulae for the O(ab*as) corrections to the neutral Higgs boson mass matrix. We also discuss the importance of the O(ab^2) corrections and derive a formula for their contribution to mh in a simple limiting case.Comment: 14 pages, 4 figures. Version to appear in Nucl. Phys.

    Anatomy of the Higgs mass spectrum

    Get PDF
    We analyze the implications of a Higgs discovery on possible ``new-physics'' scenarios, for mHm_H up to 700\sim 700 GeV. For this purpose we critically review lower and upper limits on the Higgs mass in the SM and in the MSSM, respectively. Furthermore, we discuss the general features of possible ``heavy'' (m_H \gsim 2 m_Z) Higgs scenarios by means of a simple heavy-fermion condensate model.Comment: 12 pages, LaTeX file, 3 figures, full postscript version also available at http://hpteor.lnf.infn.it/papers.htm

    NonQCD contributions to heavy quark masses and sensitivity to Higgs mass

    Get PDF
    We find that if the Higgs mass is close to its present experimental lower limit (100 GeV),Yukawa interactions in the quark-Higgs sector can make substantial contributions to the heavy quark MS masses.Comment: 16 pages, 1 figure. Fixed a few typos (eqs (7),(34)

    On the two-loop Yukawa corrections to the MSSM Higgs boson masses at large tan(beta)

    Full text link
    We complete the effective potential calculation of the two-loop, top/bottom Yukawa corrections to the Higgs boson masses in the Minimal Supersymmetric Standard Model, by computing the O(at^2 + at*ab + ab^2) contributions for arbitrary values of the bottom Yukawa coupling. We also compute the corrections to the minimization conditions of the effective potential at the same perturbative order. Our results extend the existing O(at^2) calculation, and are relevant in regions of the parameter space corresponding to tan(beta) >> 1. We extend to the Yukawa corrections a convenient renormalization scheme, previously proposed for the O(ab*as) corrections, that avoids unphysically large threshold effects associated with the bottom mass and absorbs the bulk of the corrections into the one-loop expression. For large values of tan(beta), the new contributions can account for a variation of several GeV in the lightest Higgs boson mass.Comment: 19 pages, 4 eps figures. Some formulae corrected in the Appendi

    Unification predictions

    Full text link
    The unification of gauge couplings suggests that there is an underlying (supersymmetric) unification of the strong, electromagnetic and weak interactions. The prediction of the unification scale may be the first quantitative indication that this unification may extend to unification with gravity. We make a precise determination of these predictions for a class of models which extend the multiplet structure of the Minimal Supersymmetric Standard Model to include the heavy states expected in many Grand Unified and/or superstring theories. We show that there is a strong cancellation between the 2-loop and threshold effects. As a result the net effect is smaller than previously thought, giving a small increase in both the unification scale and the value of the strong coupling at low energies.Comment: 20 pages, Latex, 5 Postscipt figures; 2 references adde

    Probing Minimal Supergravity at the CERN LHC for Large tanβ\tan\beta

    Get PDF
    For large values of the minimal supergravity model parameter tanβ\tan\beta, the tau lepton and the bottom quark Yukawa couplings become large, leading to reduced masses of τ\tau-sleptons and bb-squarks relative to their first and second generation counterparts, and to enhanced decays of charginos and neutralinos to τ\tau-leptons and bb-quarks. We evaluate the reach of the CERN LHC pppp collider for supersymmetry in the mSUGRA model parameter space. We find that values of mtg15002000m_{\tg}\sim 1500-2000 GeV can be probed with just 10 fb1^{-1} of integrated luminosity for tanβ\tan\beta values as high as 45, so that mSUGRA cannot escape the scrutiny of LHC experiments by virtue of having a large value of tanβ\tan\beta. We also perform a case study of an mSUGRA model at tanβ=45\tan\beta =45 where \tz_2\to \tau\ttau_1 and \tw_1\to \ttau_1\nu_\tau with 100\sim 100% branching fraction. In this case, at least within our simplistic study, we show that a di-tau mass edge, which determines the value of m_{\tz_2}-m_{\tz_1}, can still be reconstructed. This information can be used as a starting point for reconstructing SUSY cascade decays on an event-by-event basis, and can provide a strong constraint in determining the underlying model parameters. Finally, we show that for large tanβ\tan\beta there can be an observable excess of τ\tau leptons, and argue that τ\tau signals might serve to provide new information about the underlying model framework.Comment: 22 page REVTEX file including 8 figure

    Dynamically Induced Spontaneous Symmetry Breaking in 3-3-1 Models

    Get PDF
    We show that in SU(3)_C X SU(3)_L X U(1)_N (3-3-1) models embedded with a singlet scalar playing the role of the axion, after imposing scale invariance, dynamical symmetry breaking of Peccei-Quinn symmetry occurs through the one-loop effective potential for the singlet field. We, then, analyze the structure of spontaneous symmetry breaking by studying the new scalar potential for the model, and verify that electroweak symmetry breaking is tightly connected to the 3-3-1 breaking by the strong constraints among their vacuum expectation values. This offers a valuable guide to write down the correct pattern of symmetry breaking for multi-scalar theories. We also obtained that the accompanying massive pseudo-scalar, instead of acquiring mass of order of Peccei-Quinn scale as we would expect, develops a mass at a much lower scale, a consequence solely of the dynamical breaking.Comment: 12 pages, typos corrected, improved text, conclusions unchange

    A Higgs or Not a Higgs? What to Do if You Discover a New Scalar Particle

    Get PDF
    We show how to systematically analyze what may be inferred should a new scalar particle be discovered in collider experiments. Our approach is systematic in the sense that we perform the analysis in a manner which minimizes apriori theoretical assumptions as to the nature of the scalar particle. For instance, we do not immediately make the common assumption that a new scalar particle is a Higgs boson, and so must interact with a strength proportional to the mass of the particles with which it couples. We show how to compare different observables, and so to develop a decision tree from which the nature of the new particle may be discerned. We define several categories of models, which summarize the kinds of distinctions which the first experiments can make.Comment: 66 pages, 14 figures, version to appear in International Journal of Mod. Phys.

    Virtual Top-Quark Effects on the H->bb-bar Decay at Next-to-Leading Order in QCD

    Full text link
    By means of a heavy-top-quark effective Lagrangian, we calculate the three-loop corrections of O(alpha_s^2 G_F M_t^2) to the H->bb-bar partial decay width of the standard-model Higgs boson with intermediate mass M_H<<2M_t. We take advantage of a soft-Higgs theorem to construct the relevant coefficient functions. We present our result both in the MS-bar and on-shell schemes of mass renormalization. The MS-bar formulation turns out to be favourable with regard to the convergence behaviour. We also test a recent idea concerning the naive non-abelianization of QCD.Comment: 8 pages (Latex), 5 figures (Postscript

    Scale-independent mixing angles

    Get PDF
    A radiatively-corrected mixing angle has to be independent of the choice of renormalization scale to be a physical observable. At one-loop in MS-bar, this only occurs for a particular value, p*, of the external momentum in the two-point functions used to define the mixing angle: p*^2=(M1^2+M2^2)/2, where M1, M2 are the physical masses of the two mixed particles. We examine two important applications of this to the Minimal Supersymmetric Standard Model: the mixing angle for a) neutral Higgs bosons and b) stops. We find that this choice of external momentum improves the scale independence (and therefore provides a more reliable determination) of these mixing angles.Comment: 14 pages, 11 ps figures Version to appear in PR
    corecore