224 research outputs found

    Branched-Chain Amino Acid Transport in Cytoplasmic Membranes of Leuconostoc mesenteroides subsp. dextranicum CNRZ 1273

    Get PDF
    Membrane vesicles of Leuconostoc mesenteroides subsp. dextranicum fused with proteoliposomes prepared from Escherichia coli phospholipids containing beef heart cytochrome c oxidase were used to study the transport of branched-chain amino acids in a strain isolated from a raw milk cheese. At a medium pH of 6.0, oxidation of an electron donor system comprising ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and horse heart cytochrome c resulted in a membrane potential (Δψ) of -60 mV, a pH gradient of -36 mV, and an L-leucine accumulation of 76-fold (ΔμLeu/F = 108 mV). Leucine uptake in hybrid membranes in which a Δψ, ΔpH, sodium ion gradient, or a combination of these was imposed artificially revealed that both components of the proton motive force (Δp) could drive leucine uptake but that a chemical sodium gradient could not. Kinetic analysis of leucine (valine) transport indicated three secondary transport systems with Kt values of 1.7 (0.8) mM, 4.3 (5.9) μM, and 65 (29) nM, respectively. L-Leucine transport via the high-affinity leucine transport system (Kt = 4.3 μM) was competitively inhibited by L-valine and L-isoleucine (Ki and Kt values were similar), demonstrating that the transport system translocates branched-chain amino acids. Similar studies with these hybrid membranes indicated the presence of high-affinity secondary transport systems for 10 other amino acids

    Milk production in Uganda: Dairy farming economics and development policy impacts

    Get PDF

    Influence of Urban Landscapes on Population Dynamics in a Short-Distance Migrant Mosquito: Evidence for the Dengue Vector Aedes aegypti

    Get PDF
    Worldwide, 2.5 billion people are at risk for dengue infection, with no vaccine or treatment available. Thus dengue prevention is largely focused on controlling its mosquito vector, Aedes aegypti. Traditional mosquito control approaches typically include insecticide applications and breeding site source reduction. Presently, novel dengue control measures including the sterile insect technique and population replacement with dengue-incompetent transgenic mosquitoes are also being considered. Success of all population control programs is in part dependent upon understanding mosquito population ecology, including how anthropogenic effects on the urban landscape influence dispersal and expansion. We conducted a two year population genetic study examining how a major metropolitan highway impacts mosquito dispersal in Trinidad, West Indies. As evidenced by significant differentiation using both nuclear and mitochondrial DNA sequences, the highway acted as a significant barrier to dispersal. Our results suggest that anthropogenic landscape features can be used effectively to enhance population suppression/replacement measures by defining mosquito control zones along recognized landscape barriers that limit population dispersal

    Multilayer distortion in the reconstructed (110) surface of Au

    Get PDF
    A new LEED intensity analysis of the reconstructed Au(110)-(1×2) surface results in a modification of the missing row model with considerable distortions which are at least three layers deep. The top layer spacing is contracted by about 20%, the second layer exhibits a lateral pairing displacement of 0.07 Å and the third layer is buckled by 0.24 Å. Distortions in deeper layers seem to be probable but have not been considered in this analysis. The inter-atomic distances in the distorted surface region show both an expansion and a contraction compared to the bulk value and range from 5% contraction to about 4% expansion

    Sub-bandgap spectral photo-response analysis of Ti supersaturated Si

    Get PDF
    We have analyzed the increase of the sheet conductance (ΔG□) under spectral illumination in high dose Ti implanted Si samples subsequently processed by pulsed-laser melting. Samples with Ti concentration clearly above the insulator-metal transition limit show a remarkably high ΔG□, even higher than that measured in a silicon reference sample. This increase in the ΔG□ magnitude is contrary to the classic understanding of recombination centers action and supports the lifetime recovery predicted for concentrations of deep levels above the insulator-metal transition

    Room temperature photo-response of titanium supersaturated silicon at energies over the bandgap

    Get PDF
    Silicon samples were implanted with high Ti doses and subsequently processed with the pulsed-laser melting technique. The electronic transport properties in the 15–300 K range and the room temperature spectral photoresponse at energies over the bandgap were measured. Samples with Ti concentration below the insulator-metal (I-M) transition limit showed a progressive reduction of the carrier lifetime in the implanted layer as Ti dose is increased. However, when the Ti concentration exceeded this limit, an extraordinary recovery of the photoresponse was measured. This result supports the theory of intermediate band materials and is of utmost relevance for photovoltaic cells and Si-based detectors

    Ruling out the impact of defects on the below band gap photoconductivity of Ti supersaturated Si

    Get PDF
    In this study, we present a structural and optoelectronic characterization of high dose Ti implanted Si subsequently pulsed-laser melted (Ti supersaturated Si). Time-of-flight secondary ion mass spectrometry analysis reveals that the theoretical Mott limit has been surpassed after the laser process and transmission electron microscopy images show a good lattice reconstruction. Optical characterization shows strong sub-band gap absorption related to the high Ti concentration. Photoconductivity measurements show that Ti supersaturated Si presents spectral response orders of magnitude higher than unimplanted Si at energies below the band gap. We conclude that the observed below band gap photoconductivity cannot be attributed to structural defects produced by the fabrication processes and suggest that both absorption coefficient of the new material and lifetime of photoexcited carriers have been enhanced due to the presence of a high Ti concentration. This remarkable result proves that Ti supersaturated Si is a promising material for both infrared detectors and high efficiency photovoltaic devices
    • …
    corecore