
Sub-bandgap spectral photo-response analysis of Ti supersaturated Si
E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado et al. 
 
Citation: Appl. Phys. Lett. 101, 192101 (2012); doi: 10.1063/1.4766171 
View online: http://dx.doi.org/10.1063/1.4766171 
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v101/i19 
Published by the American Institute of Physics. 
 
Related Articles
Relevance of intra- and inter-subband scattering on the absorption in heterostructures 
Appl. Phys. Lett. 101, 191104 (2012) 
Microstructural evolution of thin film vanadium oxide prepared by pulsed-direct current magnetron sputtering 
J. Appl. Phys. 112, 093504 (2012) 
Ion implantation induced modification of optical properties in single-crystal diamond studied by coherent acoustic
phonon spectroscopy 
Appl. Phys. Lett. 101, 181904 (2012) 
Making a continuous metal film transparent via scattering cancellations 
Appl. Phys. Lett. 101, 181110 (2012) 
Three-dimensionally isotropic negative refractive index assisted by two-photon resonance via quantum
coherence 
Appl. Phys. Lett. 101, 181102 (2012) 
 
Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/ 
Journal Information: http://apl.aip.org/about/about_the_journal 
Top downloads: http://apl.aip.org/features/most_downloaded 
Information for Authors: http://apl.aip.org/authors 

Downloaded 06 Nov 2012 to 147.96.27.233. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148664112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://apl.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/400060429/x01/AIP/Goodfellow_APLCovAd_933x251banner_9_25_12/goodfellow.jpg/7744715775302b784f4d774142526b39?x
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=E. Garc�a-Hemme&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=R. Garc�a-Hernansanz&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=J. Olea&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=D. Pastor&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=A. del Prado&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://apl.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4766171?ver=pdfcov
http://apl.aip.org/resource/1/APPLAB/v101/i19?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4766192?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4759255?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4765647?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4764945?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4764553?ver=pdfcov
http://apl.aip.org/?ver=pdfcov
http://apl.aip.org/about/about_the_journal?ver=pdfcov
http://apl.aip.org/features/most_downloaded?ver=pdfcov
http://apl.aip.org/authors?ver=pdfcov


Sub-bandgap spectral photo-response analysis of Ti supersaturated Si

E. Garc�ıa-Hemme,1,2 R. Garc�ıa-Hernansanz,1,2 J. Olea,2,3 D. Pastor,1,2,3 A. del Prado,1,2

I. M�artil,1,2 and G. G�onzalez-D�ıaz1,2

1Departamento de F�ısica Aplicada III (Electricidad y Electr�onica), Universidad Complutense de Madrid,
28040 Madrid, Spain
2CEI Campus Moncloa, UCM-UPM, 28040 Madrid, Spain
3Instituto de Energ�ıa Solar, E.T.S.I. de Telecomunicaci�on, Universidad Polit�ecnica de Madrid, 28040 Madrid,
Spain

(Received 24 July 2012; accepted 22 October 2012; published online 6 November 2012)

We have analyzed the increase of the sheet conductance (DG() under spectral illumination in high

dose Ti implanted Si samples subsequently processed by pulsed-laser melting. Samples with Ti

concentration clearly above the insulator-metal transition limit show a remarkably high DG(, even

higher than that measured in a silicon reference sample. This increase in the DG( magnitude is

contrary to the classic understanding of recombination centers action and supports the lifetime

recovery predicted for concentrations of deep levels above the insulator-metal transition. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4766171]

The infrared range of the electromagnetic spectrum has

always been of great attention for the increasing number of

practical applications.1 Specifically for Si, this response is

weak2 because of its bandgap energy of 1.12 eV. However,

recent studies based on Si highly saturated with chalco-

gens3,4 and Ti5 have shown a wide range of unusual electri-

cal and optical properties, namely, a strong sub bandgap

optical absorption and an increase in the infrared photo-

response. One of the hypotheses to explain these properties

is the formation of an impurity band of allowed states within

the bandgap of the host semiconductor once the impurity

concentration has overcome the so-called insulator-metal

transition. This impurity band would allow optical transitions

for photon energies below the bandgap which, together with

a recovery of the carrier lifetime, would lead to an increase

in the photo-response at these photon energies. In this con-

text, these materials are being studied for potential photovol-

taic applications since the exploitation of the infrared region

of the solar spectrum in Si based solar cells is a goal to

achieve by the photovoltaic researchers community. The

concept of a solar cell based in this impurity band material is

known as intermediate band (IB) solar cell and would lead to

a remarkably increase in the solar cell efficiency.6

Different approaches to obtain an IB material have been

reported, such as quantum dots and highly mismatched

alloys.7,8 Another method is the introduction of deep centers at

a very high concentration in the semiconductor. Typically these

impurities act as non-radiative recombination (NRR) centers,

reducing drastically the carrier lifetime.9 However, at very high

impurity concentrations, the electron wave functions would

overlap producing a delocalization of the states associated to

the impurities. Then, a localization-delocalization transition

similar to the well-known insulator-metal transition described

by Mott is achieved.10 The concentration that determines the

insulator-metal transition limit (Mott limit) has been theoreti-

cally calculated to be approximately 6� 1019 cm�3.11 Once

this limit is achieved, the reduction of the NRR is possible and

an increase in the charge carrier lifetime may take place as it is

explained by the configuration diagram theory in Ref. 11.

Ti would be an excellent candidate to form an impurity

IB in Si as it has been shown in a previous theoretical

study.12 The combination of non-equilibrium thermody-

namic techniques such as ion implantation and pulsed laser

melting (PLM), is a powerful tool to fabricate these IB mate-

rials.5 These techniques allow a high solute trapping and can

incorporate the implanted impurities well above the solid

solubility limit of Ti in Si and even over the Mott limit.4,13

The crystalline quality of the Ti implanted and subse-

quently PLM Si layers has been reported elsewhere.13 A

complete electrical characterization of this material has been

also performed showing unusual electrical transport proper-

ties due to the bilayer structure Ti implanted layer/n-Si sub-

strate. These electrical transport characteristics have been

well explained using an analytical model14 and a numerical

simulation program15 assuming in both cases the formation

of an IB in the implanted layer of the Si sample. In relation

with the optical properties, remarkably high sub-bandgap

absorption has been also reported recently5 being the meas-

ured values for the absorption coefficient in the implanted

layer in the order of 103–104 cm�1.

Here, we will analyze the bilayer photoresponse for sub

bandgap energies relating its specific features to the Ti con-

centration in the implanted layer.

Samples 1� 1 cm2 in size of n-type Si (100) with a thick-

ness of 525lm (q� 3600 X cm; l� 1500 cm2 V�1 s�1;

n� 1012 cm�3 at room temperature) were implanted in a

refurbished VARIAN CF3000 Ion Implanter at 32 keV with

different Ti doses (1013, 1014, 1015, and 1016 cm�2) using a 7�

tilt angle. After implantation, all the samples were PLM proc-

essed at 1.4 J/cm2 with a KrF excimer laser (248 nm) at J.P.

Sercel Associates, Inc. (New Hampshire, USA).

To analyze the Ti depth profile, time-of-flight secondary

ion mass spectrometry (ToF-SIMS) measurements were carried

out in a ToF-SIMS IV model manufactured by ION-TOF, with

a 25 keV pulsed Bi3þ beam at 45� incidence. A 10 keV voltage

was used to extract the secondary ions generated and their time

of flight from the sample to the detector was measured with a

reflection mass spectrometer. The structural characterization of
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similar samples was carried out by transmission electron mi-

croscopy (TEM) and electron diffraction (ED) patterns and is

reported elsewhere.13

Finally, the sample spectral photo-conductance for ener-

gies below the bandgap was analyzed using the van der Pauw

set up. For that, four small Al triangular contacts were e-beam

evaporated in the sample corners, on top of the Ti implanted

layer. A fixed current was injected through two contacts and

the AC voltage generated over the opposite two contacts was

measured while a monochromatic chopped light impinges the

samples. A TMc300 Bentham monochromator with a halogen

lamp source was used and the intensity of the light was cali-

brated with a Bentham pyrometric detector. Samples were

placed in a homemade liquid-nitrogen cryostat with a ZnSe

window. Measurements were carried out at 90 K to reduce the

thermal noise and a vacuum pump was used to avoid moisture

condensation at low temperature. DC currents in the order of

1 mA or lower were used for the van der Pauw measurement

to avoid self-heating effects. Measurements were carried out

with a SR830 digital signal processing lock-in amplifier man-

ufactured by Stanford Research Systems (California). For all

of the measurements, the light from the source was mechani-

cally chopped at 23.5 Hz. This frequency is low enough to

allow the sample response to reach steady states both in illu-

mination and in darkness, as we have checked out by monitor-

ing the transient of the response.

Figure 1 shows the Ti concentration depth profiles

obtained by ToF-SIMS for samples implanted with the four

different Ti doses and subsequently PLM processed. The the-

oretical Mott limit is plotted as a reference. For the sample

implanted with the lowest dose (1013 cm�2), the Mott limit

concentration is not reached. However, for the samples

implanted at higher doses, a Ti concentration over the theo-

retical Mott limit is reached in a layer with an approximate

thickness of 10, 20, and 80 nm for the 1014, 1015, and

1016 cm�2 doses, respectively. Additionally, higher Ti con-

centrations are obtained as the implanted dose is increased.

Theoretically, the delocalization transition point could have

been surpassed for some of the samples and we could expect

a reduction of the NRR at the Ti implanted layer.11

Figure 2 shows TEM and ED images of similar samples

implanted with the dose of 1015 cm�2 (a) and 1016 cm�2 (b)

and subsequently processed by PLM at 0.8 Jcm�2.13 An excel-

lent crystalline structure after the PLM process is obtained for

the 1015 cm�2 doses, as shown in Fig. 2(a). A single crystal-

line layer is obtained in spite of the high Ti concentration. In

addition, no differences between the ED pattern obtained for

the processed layer and the ED of a silicon reference substrate

are observed. These results point to a very high crystal

lattice reconstruction. For the samples implanted at 1013 and

1014 cm�2 doses, we have observed clear evidences of a high

crystal quality by means of Raman spectroscopy measure-

ments. On the other hand, for the 1016 cm�2 implanted sam-

ple, a defective layer on top of a single crystalline silicon

substrate is observed. Regarding the ED patterns, we observe

a bright spot pattern that corresponds to the [111] zone axes of

the silicon. However, intermediate spots appear between the

main dots which have been associated with the highly defec-

tive lattice reconstruction.16

Figure 3 shows the results of the sheet conductance

increase (DG() magnitude normalized to the incident light

power I0, as a function of the energy of the incident photons.

The DG( magnitude is presented for the samples processed

with all the different implanted doses and for a reference Si

substrate. Due to the high noise, DG( is not represented

below 0.5, 0.6, and 0.85 eV for the Si reference substrate,

the 1014 cm�2 and the 1013 cm�2 implanted samples,

FIG. 1. ToF-SIMS profiles of Ti implanted Si samples with doses of 1013,

1014, 1015, and 1016 cm�2 and subsequently PLM at 1.4 J/cm2. The three

implanted samples with the highest doses have Ti concentrations above the

theoretical Mott limit.

FIG. 2. Cross sectional TEM images and ED images of samples implanted

with the doses of 1015 cm�2 (a) and 1016 cm�2 (b) and subsequently proc-

essed by PLM.

FIG. 3. Variation of the sheet conductance spectral response normalized to

the impinging light power as a function of the incident photon energy for the

Si unimplanted reference sample, and for the four implanted samples with

1013, 1014, 1015, and 1016 cm�2 doses and subsequently PLM at 1.4 J/cm2.

Measurements were carried out at 90 K.
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respectively. For energies higher than 1 eV, the absorption

edge of the Si bandgap is clearly observed for all the sam-

ples. A noticeable DG( magnitude is observed for the Si

substrate even for energies below the bandgap. It must be

noted that the doping of the substrate is very low, leading to

high carrier lifetime, which is the responsible of the high

DG( measured values.

The sheet resistance of a uniform sample like the refer-

ence substrate in a darkness state R(d (or its inverse, the

sheet conductance G(d) was defined by van der Pauw as17

R(d ¼
1

G(d
¼ p

ln 2

Vd

I
; (1)

where I is the fixed current intensity injected into the

sample through two adjacent contacts, and Vd is the voltage

drop in a darkness state over the opposite two contacts. An

analogous expression would be obtained for the illumination

state replacing the subscript d by i. This macroscopic magni-

tude is related with the fundamental electrical transport pa-

rameters for a n-type semiconductor

R(d ¼
1

G(d
¼ 1

qlndt
; (2)

where q is the electron charge, l is the carrier mobility,

nd is the carrier concentration in darkness, and t is the sample

thickness.

Under illumination, optical transitions take place,

increasing the charge carrier concentration. In an illuminated

steady state, the carrier concentration can be defined as:

ni ¼ nd þ Dn, where Dn is the increase in the carrier concen-

tration with respect to the darkness situation. This excess of

carriers, Dn, leads to a variation in the sheet conductance

and therefore a variation of the voltage drop measured in the

van der Pauw set up: Vi ¼ Vd þ DV. The difference of the

voltage drop corresponding to darkness and illumination

states DV is the voltage amplitude measured using the lock-

in amplifier set up. Considering Eq. (1), for darkness and

illumination, and taking into account that DV � Vd, the

measured DV is related to the increase of the sheet conduct-

ance by

DV ¼ �Vd
DG(

Gd
; (3)

where DG( is the increase of the sheet conductance due

to the illumination which is related to Dn by its definition,

according to Eq. (2): DG( ¼ qlDnt. The sign in Eq. (3) just

indicates a 180� phase difference.

Considering that the chopping frequency is low enough

to obtain an illuminated steady state, the charge carrier gen-

eration rate has to be equal to the recombination rate. The

generation rate can be defined as: g ¼ agI0t, where a is the

optical absorption coefficient, g is the quantum yield, and I0

is the incident power of light (impinging photons that reach

the sample per second and cm2). To express the generation

rate in this way, we have assumed that at� 1 which is a

good approximation both for the substrate and for the

implanted layer. In the former case, a is very low although

unknown for energies well below the bandgap (which is our

interest area) and in the second one because the implanted

thickness is lower than 10�5 cm as it is shown in Fig. 1 and

the a coefficient is lower than 104 cm�1. The recombination

rate can be defined as: r ¼ Dn=s, where s is the charge car-

rier lifetime. Then, assuming steady state conditions ðg ¼ rÞ
and using the definition of DG(, we can relate it with the

charge carrier lifetime in the reference substrate as follows:

DG(

I0

¼ qltgas: (4)

The experimental variation of the DG(=I0 magnitude

and its relation with the lifetime of carriers will be assessed

in the next paragraphs.

The sample implanted with the lowest dose (1013 cm�2)

presents values of DG( two orders of magnitude lower than

the corresponding DG( values obtained for the silicon refer-

ence sample and its photo-response decreases drastically for

irradiation energies below 0.85 eV. Dark DC measurements

of this sample show the same sheet conductance as the sub-

strate from room temperature to 90 K. At 90 K, the sheet con-

ductance showed a value of 10.87� 10�5 S. The coincidence

on these measurements implies that we are dealing with two

layers in parallel (implanted layer/substrate) with no limita-

tion for the electrical conduction between them and that the

sheet conductance of the implanted layer is much lower than

the sheet conductance of the substrate (It must be noted that

the thickness and therefore the sheet conductance of the sub-

strate layer is unaffected by the formation of the very thin

implanted layer).

Extending Eq. (3) to the case of a parallel bilayer, we

obtain

DVb ¼ �Vbd
DG(l þ DG(s

G(ld þ G(sd
¼ �Vbd

lltlDnl þ lstsDns

lltlnl þ lstsns
; (5)

where DVb is the voltage generated in the bilayer and

the subscript l is relative to the implanted layer and s for the

substrate. As explained before, for the 1013 cm�2 sample, the

value of G(ld is much lower than G(sd. It must be expected

also that lltlDnl will be smaller than lstsDns because the

presence of greats amounts of Ti does not allow the presence

of surplus carriers on the implanted layer and also because

tl � ts and ll < ls. Consequently, the observed photovolt-

age should be the same than for the substrate reference, i.e.,

DVb ¼ �Vsd
DG(s

G(sd
¼ �Vsd

Dns

ns
. As the experimental measure-

ments of the sample implanted at 1013 cm�2 shows DVb val-

ues orders of magnitude lower than the ones obtained for the

reference substrate, we have to conclude that the presence of

a high Ti concentration in the upper layer also modified the

photocarriers density at the substrate Dns. As stated before,

the high resistivity substrate has a very high mean free path,

higher than the substrate thickness, producing a strong inter-

action with the wafer surfaces. The interface between the

implanted layer and the substrate is characterized by a high

recombination velocity due to the high concentration of deep

centers. Therefore, there is a great probability for the annihi-

lations of the photocarriers which interacts with it. In fact,

it is well establish that in this situation the lifetime can be

192101-3 Garc�ıa-Hemme et al. Appl. Phys. Lett. 101, 192101 (2012)
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written as 1
sef f
¼ 1

ss
þ S=

�
, where sef f is the effective life-

time, ss is the lifetime in the reference substrate, and S is the

recombination velocity at the implanted layer/substrate inter-

face. If S has a high value which is in agreement with the

high Ti concentration, it should be expected an important

decrease of the substrate photoconductivity, which leads to

the low measured values of the bilayer photoconductance

DG(b for this sample as can be seen in Fig. 3.

The sample implanted with 1014 cm�2 dose (dark sheet

conductance of 10.87� 10�5 S) shows higher photoconduc-

tivity, which is not congruent with the previous explanation

as we have higher Ti concentration, except if we accept that

the recombination velocity at the implanted layer/substrate

interface is becoming lower. According to Fig. 1, this sample

has Ti concentration over the Mott limit but in a very

reduced thickness. Therefore, the insulator-metal transition

takes place and then a reduction of the recombination veloc-

ity is expected at least in this thinner layer.

For sample implanted with 1015 cm�2 dose (dark sheet

conductance of 10.03� 10�5 S), we can observe in Fig. 3

that the photoconductivity could now be detected for a wider

energy range going down to 0.3 eV and is higher for the

bilayer than for the substrate for some energy range. As it

was shown in previous published papers related with electri-

cal transport measurements,14 the formation of the IB is well

established for this dose. In this sense, the previously ana-

lyzed 1014 cm�2 sample could be considered a transition

sample between a Ti rich sample and a sample where the IB

is fully formed. It is not reasonable to assume that for the

sample implanted at the dose of 1015 cm�2 the interface

recombination velocity S is reduced to 0 in spite of the IB

formation but it is surely much lower that for the samples

implanted at 1013 or 1014 cm�2 doses. The increase of the

photoconductivity over the substrate values could be

explained having in mind Eq. (5). First, there is a recovery of

the lifetime that will increase Dns drastically to values com-

parable but anyway lower than in the case of the substrate

alone. Second, an increase of the photocarriers in the

implanted layer could made lltlDnl comparable or higher

than lstsDns and consequently an increase in DG(b over the

substrate photoconductance could be observed.

For the 1015 cm�2 sample, the condition G(ld � G(sd

still holds (since tl � ts) and the voltage increase could be

written as

DVb ¼ Vdb
1

ns

lltlDnl

lsts
þ Dns

� �
; (6)

which could be larger than the substrate value.

We have to note that Dnl could increase due to two facts:

the increase of the light absorption in the implanted layer and

also the increase of the effective lifetime due to the formation

of the IB. Anyway, the increase of Dnl has to be very impor-

tant to compensate the diminishing effect of
ll tl
lsts

which might

be in the order of 10�3. We observe very small differences in

the measured transmittance for samples implanted with

1014 cm�2 and 1015 cm�2 with respect to the transmittance of

the Si reference sample. Then, the increase produced in the

DG( magnitude cannot be justified completely by

the increase of the absorption coefficient in
DG(

I0
¼ qltgas.

Therefore, an increase of the lifetime due to the reduction of

the non-radiative recombination in the implanted layer/Si sub-

strate interface is necessary to explain the results.

These results are in full agreement with a previous work

in which the authors measured an increase of the carrier life-

time on Si wafers supersaturated with Ti implanted at 1015,

5� 1015, and 1016 cm�2 doses18 using the quasi-steady-state

photoconductance technique.19

Finally, the sample implanted with the highest dose

(1016 cm�2, dark sheet conductance of 68.35� 10�5 S)

presents slightly lower values of DG( than the sample

implanted with the dose of 1015 cm�2, even though it contains

a higher Ti concentration. We could relate this behavior with

the defective lattice reconstruction expected for this sample

due to the high implantation dose, whereas the samples

implanted with lower doses show a far better lattice reconstruc-

tion, as previously discussed concerning Figs. 2(a) and 2(b).13

The presence of any kind of defect, like twin boundaries,

stacking faults, dislocations, or even the cellular breakdown

could have a detrimental effect in terms of a stronger recombi-

nation, which would result in a decrease of DG(, as observed.

In conclusion, Ti supersaturated Si layers were obtained

by means of two non-equilibrium thermodynamic processes:

ion implantation and PLM. Samples were implanted with

different Ti concentrations, below and above the theoretical

Mott limit. As the Ti concentration increases, an increase of

the DG( spectral response is observed. This DG( increase

has been related to the increase of the carrier life time pre-

dicted by the insulator-metal transition theory.11 These

results could lead to the development of a novel generation

of semiconductor devices based in Si with enhanced photo-

response in the infrared range of the spectrum.
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