192 research outputs found

    Effect of stress on ultrasonic pulses in fiber reinforced composites

    Get PDF
    An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress on an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267,400 cm/sec to 680,000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased

    The effect of stress on ultrasonic pulses in fiber reinforced composites

    Get PDF
    An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress for an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267 400 cm/sec to 680 000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased

    Assessing positive matrix factorization model fit: a new method to estimate uncertainty and bias in factor contributions at the daily time scale

    No full text
    International audienceA Positive Matrix Factorization receptor model for aerosol pollution source apportionment was fit to a synthetic dataset simulating one year of daily measurements of ambient PM2.5 concentrations, comprised of 39 chemical species from nine pollutant sources. A novel method was developed to estimate model fit uncertainty and bias at the daily time scale, as related to factor contributions. A balanced bootstrap is used to create replicate datasets, with the same model then fit to the data. Neural networks are trained to classify factors based upon chemical profiles, as opposed to correlating contribution time series, and this classification is used to align factor orderings across results associated with the replicate datasets. Factor contribution uncertainty is assessed from the distribution of results associated with each factor. Comparing modeled factors with input factors used to create the synthetic data assesses bias. The results indicate that variability in factor contribution estimates does not necessarily encompass model error: contribution estimates can have small associated variability yet also be very biased. These results are likely dependent on characteristics of the data

    Assessing positive matrix factorization model fit: a new method to estimate uncertainty and bias in factor contributions at the measurement time scale

    Get PDF
    A Positive Matrix Factorization receptor model for aerosol pollution source apportionment was fit to a synthetic dataset simulating one year of daily measurements of ambient PM<sub>2.5</sub> concentrations, comprised of 39 chemical species from nine pollutant sources. A novel method was developed to estimate model fit uncertainty and bias at the daily time scale, as related to factor contributions. A circular block bootstrap is used to create replicate datasets, with the same receptor model then fit to the data. Neural networks are trained to classify factors based upon chemical profiles, as opposed to correlating contribution time series, and this classification is used to align factor orderings across the model results associated with the replicate datasets. Factor contribution uncertainty is assessed from the distribution of results associated with each factor. Comparing modeled factors with input factors used to create the synthetic data assesses bias. The results indicate that variability in factor contribution estimates does not necessarily encompass model error: contribution estimates can have small associated variability across results yet also be very biased. These findings are likely dependent on characteristics of the data

    Studies on porcine circovirus type 2 vaccination of 5-day-old piglets

    Get PDF
    Porcine circovirus type 2 (PCV2) vaccines have become widely used since they became available in 2006. It is not uncommon for producers to use PCV2 vaccines in pigs younger than what is approved by manufacturers. The objective of this study was to determine the efficacy of a chimeric and a subunit PCV2 vaccine administered at 5 or 21 days of age. Forty-eight PCV2-naïve piglets were randomly divided into six groups of eight pigs each. Vaccination was done at day 5 or day 21, followed by triple challenge with PCV2, porcine parvovirus (PPV), and porcine reproductive and respiratory syndrome virus (PRRSV) at day 49. Vaccinated pigs seroconverted to PCV2 approximately 14 days postvaccination and had a detectable neutralizing antibody response by 21 days postvaccination regardless of age at vaccination. At day 49, the pigs vaccinated with the chimeric vaccine had significantly higher levels of neutralizing antibodies than the pigs vaccinated with the subunit vaccine. After challenge, vaccinated pigs had significantly decreased levels of PCV2 viremia and a decreased prevalence and severity of microscopic lesions compared to the positive-control group, which had severe lymphoid lesions associated with abundant PCV2 antigen, compatible with PCV-associated disease. The results of this study indicate that, under the conditions of this study, vaccination of PCV2-naïve pigs at day 5 or day 21 resulted in development of a detectable humoral immune response and provided reduction or complete protection against PCV2 viremia and PCV2-associated lesions after triple challenge with PCV2, PPV, and PRRSV

    Cell Proliferation in the Presence of Telomerase

    Get PDF
    BACKGROUND: Telomerase, which is active early in development and later in stem and germline cells, is also active in the majority of human cancers. One of the known functions of telomerase is to extend the ends of linear chromosomes, countering their gradual shortening at each cell division due to the end replication problem and postreplication processing. Telomerase concentration levels vary between different cell types as well as between different tumors. In addition variable telomerase concentrations will exist in different cells in the same tumor when telomerase inhibitors are used, because of limitations of drug delivery in tissue. Telomerase extends short telomeres more frequently than long telomeres and the relation between the extension frequency and the telomere length is nonlinear. METHODOLOGY/PRINCIPAL FINDINGS: Here, the biological data of the nonlinear telomerase-telomere dynamics is incorporated in a mathematical theory to relate the proliferative potential of a cell to the telomerase concentration in that cell. The main result of the paper is that the proliferative capacity of a cell grows exponentially with the telomerase concentration. CONCLUSIONS/SIGNIFICANCE: The theory presented here suggests that long term telomerase inhibition in every cancer progenitor or cancer stem cell is needed for successful telomere targeted cancer treatment. This theory also can be used to plan and assess the results of clinical trials targeting telomerase

    A mammalian functional-genetic approach to characterizing cancer therapeutics

    Get PDF
    Supplementary information is available online at http://www.nature.com/naturechemicalbiology/. Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/.Identifying mechanisms of drug action remains a fundamental impediment to the development and effective use of chemotherapeutics. Here we describe an RNA interference (RNAi)–based strategy to characterize small-molecule function in mammalian cells. By examining the response of cells expressing short hairpin RNAs (shRNAs) to a diverse selection of chemotherapeutics, we could generate a functional shRNA signature that was able to accurately group drugs into established biochemical modes of action. This, in turn, provided a diversely sampled reference set for high-resolution prediction of mechanisms of action for poorly characterized small molecules. We could further reduce the predictive shRNA target set to as few as eight genes and, by using a newly derived probability-based nearest-neighbors approach, could extend the predictive power of this shRNA set to characterize additional drug categories. Thus, a focused shRNA phenotypic signature can provide a highly sensitive and tractable approach for characterizing new anticancer drugs.National Institute of Mental Health (U.S.) (grant RO1 CA128803-03)American Association for Cancer ResearchMassachusetts Institute of Technology. Dept. of BiologyNational Cancer Institute (U.S.). Integrative Cancer Biology Program (grant 1-U54-CA112967

    Telomere Attrition Due to Infection

    Get PDF
    BACKGROUND: Telomeres--the terminal caps of chromosomes--become shorter as individuals age, and there is much interest in determining what causes telomere attrition since this process may play a role in biological aging. The leading hypothesis is that telomere attrition is due to inflammation, exposure to infectious agents, and other types of oxidative stress, which damage telomeres and impair their repair mechanisms. Several lines of evidence support this hypothesis, including observational findings that people exposed to infectious diseases have shorter telomeres. Experimental tests are still needed, however, to distinguish whether infectious diseases actually cause telomere attrition or whether telomere attrition increases susceptibility to infection. Experiments are also needed to determine whether telomere erosion reduces longevity. METHODOLOGY/PRINCIPAL FINDINGS: We experimentally tested whether repeated exposure to an infectious agent, Salmonella enterica, causes telomere attrition in wild-derived house mice (Mus musculus musculus). We repeatedly infected mice with a genetically diverse cocktail of five different S. enterica strains over seven months, and compared changes in telomere length with sham-infected sibling controls. We measured changes in telomere length of white blood cells (WBC) after five infections using a real-time PCR method. Our results show that repeated Salmonella infections cause telomere attrition in WBCs, and particularly for males, which appeared less disease resistant than females. Interestingly, we also found that individuals having long WBC telomeres at early age were relatively disease resistant during later life. Finally, we found evidence that more rapid telomere attrition increases mortality risk, although this trend was not significant. CONCLUSIONS/SIGNIFICANCE: Our results indicate that infectious diseases can cause telomere attrition, and support the idea that telomere length could provide a molecular biomarker for assessing exposure and ability to cope with infectious diseases

    Neither loss of Bik alone, nor combined loss of Bik and Noxa, accelerate murine lymphoma development or render lymphoma cells resistant to DNA damaging drugs

    Get PDF
    The pro-apoptotic BH3-only protein, BIK, is widely expressed and although many critical functions in developmental or stress-induced death have been ascribed to this protein, mice lacking Bik display no overt abnormalities. It has been postulated that Bik can serve as a tumour suppressor, on the basis that its deficiency and loss of apoptotic function have been reported in many human cancers, including lymphoid malignancies. Evasion of apoptosis is a major factor contributing to c-Myc-induced tumour development, but despite this, we found that Bik deficiency did not accelerate Eμ-Myc-induced lymphomagenesis. Co-operation between BIK and NOXA, another BH3-only protein, has been previously described, and was attributed to their complementary binding specificities to distinct subsets of pro-survival BCL-2 family proteins. Nevertheless, combined deficiency of Bik and Noxa did not alter the onset of Eμ-Myc transgene induced lymphoma development. Moreover, although p53-mediated induction of Bik has been reported, neither Eμ-Myc/Bik−/− nor Eμ-Myc/Bik−/−Noxa−/− lymphomas were more resistant than control Eμ-Myc lymphomas to killing by DNA damaging drugs, either in vitro or in vivo. These results suggest that Bik, even in combination with Noxa, is not a potent suppressor of c-Myc-driven tumourigenesis or critical for chemotherapeutic drug-induced killing of Myc-driven tumours

    An Epstein-Barr Virus Anti-Apoptotic Protein Constitutively Expressed in Transformed Cells and Implicated in Burkitt Lymphomagenesis: The Wp/BHRF1 Link

    Get PDF
    Two factors contribute to Burkitt lymphoma (BL) pathogenesis, a chromosomal translocation leading to c-myc oncogene deregulation and infection with Epstein-Barr virus (EBV). Although the virus has B cell growth–transforming ability, this may not relate to its role in BL since many of the transforming proteins are not expressed in the tumor. Mounting evidence supports an alternative role, whereby EBV counteracts the high apoptotic sensitivity inherent to the c-myc–driven growth program. In that regard, a subset of BLs carry virus mutants in a novel form of latent infection that provides unusually strong resistance to apoptosis. Uniquely, these virus mutants use Wp (a viral promoter normally activated early in B cell transformation) and express a broader-than-usual range of latent antigens. Here, using an inducible system to express the candidate antigens, we show that this marked apoptosis resistance is mediated not by one of the extended range of EBNAs seen in Wp-restricted latency but by Wp-driven expression of the viral bcl2 homologue, BHRF1, a protein usually associated with the virus lytic cycle. Interestingly, this Wp/BHRF1 connection is not confined to Wp-restricted BLs but appears integral to normal B cell transformation by EBV. We find that the BHRF1 gene expression recently reported in newly infected B cells is temporally linked to Wp activation and the presence of W/BHRF1-spliced transcripts. Furthermore, just as Wp activity is never completely eclipsed in in vitro–transformed lines, low-level BHRF1 transcripts remain detectable in these cells long-term. Most importantly, recognition by BHRF1-specific T cells confirms that such lines continue to express the protein independently of any lytic cycle entry. This work therefore provides the first evidence that BHRF1, the EBV bcl2 homologue, is constitutively expressed as a latent protein in growth-transformed cells in vitro and, in the context of Wp-restricted BL, may contribute to virus-associated lymphomagenesis in vivo
    • …
    corecore