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Abstract
Identifying mechanisms of drug action remains a fundamental impediment to the development and
effective use of chemotherapeutics. Here we describe an RNA interference (RNAi)-based strategy
to characterize small-molecule function in mammalian cells. By examining the response of cells
expressing short hairpin RNAs (shRNAs) to a diverse selection of chemotherapeutics, we could
generate a functional shRNA signature that was able to accurately group drugs into established
biochemical modes of action. This, in turn, provided a diversely sampled reference set for high-
resolution prediction of mechanisms of action for poorly characterized small molecules. We could
further reduce the predictive shRNA target set to as few as eight genes and, by using a newly
derived probability-based nearest-neighbors approach, could extend the predictive power of this
shRNA set to characterize additional drug categories. Thus, a focused shRNA phenotypic
signature can provide a highly sensitive and tractable approach for characterizing new anticancer
drugs.

Chemotherapy remains the frontline therapy for systemic malignancies. However, drug
development has been severely hampered by an inability to efficiently elucidate mechanisms
of drug action. This limits both the development of modified compounds with improved
efficacy and the capability to predict mechanisms of drug resistance and select optimal
patient populations for a given agent. Although drug-target interactions have traditionally
been examined using biochemical approaches1, a number of genetic strategies have been
developed to identify pathways targeted by uncharacterized small molecules. A well-
established genetic approach to drug classification is chemogenomic profiling in yeast2–6. In
this approach, bar-coded yeast deletion strains are exposed to select agents, and genotype-
dependent drug sensitivity is used to identify genes and pathways affected by a given drug,
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as well as to develop a response signature that can be compared with other chemical or
genetic perturbations5,7,8. This approach has proven quite powerful and has been broadly
disseminated; however, its efficacy in interrogating cancer chemotherapeutics is limited by
the lack of conservation of certain drug targets from yeast to mammals. This is a particular
problem in the context of targeted therapeutics, which are frequently directed toward
alterations that are specific to mammalian tumors.

More recently, genetic approaches have been developed to examine drug action in
mammalian settings. One such approach is to examine drug response in a diverse panel of
tumor cell lines9. In this case, the pattern of cell line sensitivity and resistance can serve as a
signature that defines drug mechanism. Additionally, drug response can be correlated with
the presence of specific cancer-related alterations, although this analysis can be confounded
by the large diversity of alterations present in a given tumor. An alternative approach is to
compare the global transcriptional changes induced by test compounds to those induced by
known drugs or defined genetic alterations10–13. Here gene expression changes are used as
signatures that are characteristic of exposure to a given agent or the presence of a specific
cellular state, and common expression changes can be used to cluster similar small
molecules. Although each of these approaches have yielded important new insights into drug
action, these strategies retain a level of technical variability and resource requirement that
limits both disseminated use and overall efficacy. Here we report a tractable RNAi-based
approach that represents a simple yet powerful platform for drug screening and
characterization.

RESULTS
Clustering drugs via shRNA-mediated phenotypes

We hypothesized that RNAi-mediated suppression of cell death regulators in mammalian
cells would uniquely affect the cellular response to certain types of drugs and that drugs with
similar mechanisms of action would elicit similar shRNA-dependent responses. To test this
strategy, we started with a cell line derived from tumors from a well-established mouse
model of Burkitt’s lymphoma14,15. This cell line was chosen as an experimental system for
two reasons. First, these cells are highly sensitive to a diverse set of chemotherapeutics,
allowing small molecules to be used at pharmacologically relevant doses. Second, like many
high-grade lymphomas, these cells undergo rapid apoptosis, as opposed to prolonged cell
cycle arrest, following treatment. This common biological outcome after treatment allows
for a systematic comparison of drugs.

In determining which genes to knock down for our studies, we chose two classes of genes
known to be critical for cell fate decisions after drug treatment. The Bcl2 family of genes
includes both central mediators and inhibitors of cell death, and different members of this
gene family are involved in the response to distinct cell death stimuli16. The transcription
factor p53 functions upstream of components of the Bcl2 family and is another important
cell death regulator17. Mutation or deletion of p53 has been shown to affect the cellular
response to many types of chemotherapeutic drugs18,19. As the stabilization and activity of
p53 is strongly regulated by phosphorylation, we also targeted a panel of p53-activating
kinases, including ATM, ATR, Chk1, Chk2, DNA-PKcs, Smg-1, JNK1 and p38 (refs. 20,21).
Importantly, aside from their roles as regulators of p53, these kinases are also involved in
additional cellular responses to chemotherapy, such as DNA replication and repair, the
activation of cell cycle checkpoints, regulation of RNA stability and stress signaling22–26.
Thus, we generated shRNA vectors targeting the Bcl2 family, p53 and its activating kinases
(Supplementary Results, Supplementary Fig. 1 and Supplementary Table 1).
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To enable a quick and accurate analysis of how the suppression of a given gene affects drug-
induced cell death, we used a single-cell flow cytometry-based GFP competition assay.
Lymphoma cells were infected with retroviruses coexpressing a given shRNA and green
fluorescent protein (GFP) and subjected to 72 h of drug treatment (Fig. 1a). In this assay,
GFP-negative cells in the same population serve as an internal control. Using this approach,
we systematically investigated how suppression of individual genes affected drug-induced
cell death. As an initial proof of principle, we chose 15 chemotherapeutics representing
major categories of anticancer drugs in clinical use. To compare different drugs using an
objective criterion, all drugs were used at their LD80–90—a concentration at which 80–90%
of uninfected lymphoma cells were killed (Supplementary Table 2). A control retrovirus
lacking an shRNA or retroviruses expressing shRNAs targeting 29 genes were individually
used to infect lymphoma cells. Each infected population was separately treated with 15
chemotherapeutic drugs, and the effect of a particular gene knockdown on therapeutic
response was compiled as values of the GFP-determined ‘resistance index’ (RI) (Fig. 1b).
Drugs with similar mechanism of action were expected to have similar patterns of genetic
dependence on these 29 genes, which would manifest as similar patterns of RI values. To
test this hypothesis in an unbiased manner, we used an unsupervised agglomerative
hierarchical clustering approach to compare the RI values of different drugs (Fig. 1b). The
significance of this hypothesis was then evaluated using a Monte Carlo principal
components analysis-based method27. Notably, all 15 drugs tested in this initial experiment
formed six distinct clusters that were consistent with their molecular mechanisms of action
(Supplementary Fig. 2). Specifically, clear groupings were seen between topoisomerase II
(TopoII) poisons doxorubicin (Dox) and etoposide (VP-16), DNA cross-linking agents
cisplatin (CDDP), mitomycin C (MMC) and chlorambucil (CBL), single-strand break
(SSB)-inducing agents camptothecin (CPT), 6-thioguanine (6-TG) and temozolomide
(TMZ)28,29, nucleic acid synthesis inhibitors methotrexate (MTX), 5-flurouracil (5-FU) and
hydroxyurea (HU), and spindle poisons vincristine (VCR) and paclitaxel (Taxol). Taken
together, these data showed that a simple comparison of drug response in cells expressing a
small set of shRNAs could effectively categorize established chemotherapeutic drugs into
subgroups that demarcate common target proteins and pathways.

To investigate whether this platform could be used to characterize mechanisms of drug
action, we examined several recently developed chemotherapeutics:
suberoylanilide,hydroxamic acid (SAHA), decitabine and roscovitine. Although the
immediate biochemical targets of these new chemotherapeutics are known, the mechanisms
of cell death induced by these drugs are less well defined. Using our RNAi-based approach,
we compiled RI values for each of these three drugs and compared them with the 15
reference drugs mentioned earlier. We observed that the CDK inhibitor roscovitine (Rosco)
was most similar to the RNA polymerase inhibitor actinomycin D (ActD) (Fig. 1c and
Supplementary Fig. 3a). This is consistent with the findings of several studies showing that
roscovitine inhibits CDK7, a component of the general transcription factor TFIIH, to inhibit
RNA transcription30–32. Notably, the HDAC inhibitor SAHA and the DNA
methyltransferase inhibitor decitabine (DAC) formed a distinct cluster outside of the 15
reference drugs (Fig. 1c), suggesting that these two drugs may share a similar mechanism of
cell death. To extract the most relevant genes for distinguishing the SAHA-DAC cluster,
shRNAs were ranked upon their ability to classify this cluster relative to the rest of the
dataset. The most unique aspects of the new SAHA-DAC cell death signature were the (i)
p53-independence (log2RI ≈ 0) and (ii) Bim-dependence (log2RI ≈ 2) of cell death,
consistent with previous studies of SAHA treatment in mouse lymphoma models33. Indeed,
both SAHA and DAC treatment resulted in an increase in the levels of the proapoptotic
BH3-only protein Bim (Supplementary Fig. 3b). Furthermore, suppression of the Bim
transcription regulator Chop, but not Foxo3a, resulted in resistance to both SAHA and DAC
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(Fig. 1d). Thus, the RI patterns of these newly established drugs could effectively identify
their mechanism of action.

Functional characterization of derivatized compounds
A significant challenge in drug development is determining whether lead compound
derivatives with enhanced efficacy share the same mechanism of action as the original small
molecule. Theoretically, derivatized compounds could show enhanced efficacy, owing to
either the activation of additional cell death pathways or, alternatively, through altered
pharmacodynamic properties. To examine whether our approach could be used to
differentiate between these possibilities, we performed an shRNA-based functional analysis
of CY190602, a chemical derivative of the nitrogen mustard bendamustine (Fig. 2a).
Compared to the parental drug, CY190602 shows approximately 20–100-fold enhanced
toxicity toward cell lines from patients with multiple myeloma (Fig. 2b), an indication for
which bendamustine is currently in clinical use. However, the mechanism underlying this
increase in cytotoxicity remains unclear. Notably, CY190602’s modification on
bendamustine occurs on a side chain well away from the nitrogen mustard functional group.
To address whether CY190602’s toxicity could still be attributed to the nitrogen mustard or
whether it was a result of altered target specificity caused by the side chain modification
moieties, we compiled the RI values of bendamustine and CY190602 and compared them to
those of our 18 reference drugs. Notably, bendamustine and CY190602 showed highly
similar patterns of RI values (Fig. 2c), despite a 100-fold-lower dose of CY190602.
Additionally, both drugs clustered together with chlorambucil, another nitrogen mustard
(Fig. 2d), and a supervised K-nearest-neighbors approach (see Supplementary Methods for a
detailed rationale) predicted a chlorambucil-like mechanism for both drugs. This suggests
that the primary mode of action of CY190602 is nitrogen mustard-mediated DNA damage
rather than an off-target effect conferred during drug optimization.

Screening for compounds on the basis of shRNA signatures
Next, we asked whether this approach could be adapted to phenotype-based screens for new
drug candidates without well-established mechanisms of action. Suppression of ATM, Chk2
and p53 all led to significant resistance to genotoxic drugs such as Dox, VP-16, CPT, TMZ,
6TG, CDDP, MMC and CBL (Fig. 1b). This suggested that the shATM-Chk2-p53
‘resistance signature’ might be used to identify genotoxic drugs. To test this hypothesis
quantitatively, we examined whether a supervised K-nearest-neighbors approach could
accurately characterize all of the drugs in our dataset as either genotoxic or nongenotoxic.
Indeed, when a broad panel of chemotherapeutic drugs was tested, all 16 genotoxic
chemotherapeutics, but none of 15 nongenotoxic chemotherapeutics, showed a distinct
shATM-Chk2-p53 resistance signature (Fig. 3a). This three-gene resistance signature was
subsequently used to screen a chemical library for genotoxic compounds. Two compounds,
apigenin and NSC3852, were identified on the basis of their strong shATM-Chk2-p53
resistance signature (Fig. 3b). We then compiled the full 29-gene RI values for these two
compounds and compared them with reference drugs (Fig. 3c). Notably, the K-nearest-
neighbors approach predicted apigenin to be most similar to the TopoII poisons doxorubicin
and etoposide and NSC3852 to be most like the SSB-inducing agents. Subsequent clustering
showed NSC3852 to be most similar to the topoisomerase I (TopoI) poison camptothecin.
Our previous studies demonstrated that TopoII poisons are ineffective in killing TopoII-
deficient cells, while showing enhanced toxicity for cells lacking TopoI34. Consistent with
the clustering-based functional predictions, apigenin showed a pattern of shTopoII resistance
and shTopoI sensitivity similar to the established TopoII poisons doxorubicin, etoposide and
mitoxantrone (Fig. 3d). Conversely, NSC3852 showed a characteristic pattern of resistance,
similar to established TopoI poisons camptothecin and irinotecan (CPT11). Notably, none of
the other genotoxic drugs showed these resistance and sensitivity patterns with shTopoI and
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shTopoII (Fig. 3d). We also found that apigenin and NSC3852 failed to induce DNA
damage in TopoII-and TopoI-deficient cells, respectively (Supplementary Fig. 4). Moreover,
in a long-term survival assay, TopoII deficiency resulted in significant protection from
apigenin, whereas TopoI deficiency significantly protected cells from NSC3852 (Fig. 3e).
Taken together, these assays confirmed our classification of apigenin and NSC3852 as
TopoII and TopoI poisons, respectively. Thus, small shRNA signatures can be used to
screen chemical libraries to identify and characterize new compounds with particular target
specificities.

An eight-shRNA set for accurate drug mechanism predication
Given that a three-gene signature could effectively predict and classify genotoxic drugs, we
hypothesized that the combined resistance and sensitivity pattern of a small number of genes
may be sufficient to accurately characterize most of our chemotherapeutic drugs in this cell
line. To test this hypothesis, we examined the seven drug clusters demarcated in our
secondary analysis (Fig. 1c) and asked which smaller sets of shRNAs could similarly define
these groupings. Here we used a K-nearest-neighbors cross-validation-based approach and a
randomized search through 50,000 potential gene subsets. Although most smaller shRNA
sets showed a significant loss in resolution relative to the reference set, we found that a set
of eight shRNAs, targeting p53, ATR, Chk1, Chk2, Smg-1, DNA-PKcs, Bok and Bim, was
able to classify the reference dataset with 100% accuracy and was highly correlated (r2 =
0.81) with the original 29 shRNA signature (Fig. 4a and Supplementary Fig. 5a,b). Although
several other sets of eight shRNAs could also classify chemotherapeutics with 100%
accuracy, this eight-shRNA signature had the highest range of measurement across all drugs.
Notably, this eight-shRNA signature could also correctly classify bendamustine, CY190602,
apigenin and NSC3852—drugs that were not included in the feature reduction and cross-
validation of the eight-shRNA signature (Supplementary Fig. 5c).

Given the known off-target potential of RNAi, we next sought to determine whether the
functional signature derived from these eight shRNAs was attributable to the specific effect
of shRNA target gene suppression on therapeutic response. To do this, we used a second set
of shRNAs targeting the same eight genes to generate an independent drug response
signature. Comparison of shRNA pairs revealed a high correlation between drug response
signatures (r2 = 0.86) in cells transduced with distinct shRNAs targeting the same gene,
suggesting that the major effects of these shRNAs are ‘on target’ (Fig. 4b). Additionally,
unsupervised hierarchical clustering of the first eight-shRNA response signature or the
combined response signatures generated using the first and second eight-shRNA sets
revealed the same seven drug classes identified with the original 29-shRNA signature (Fig.
4c). Notably, however, the second set of eight shRNAs could independently predict only
five out of seven drug classes. This loss of resolution in the second shRNA set may
represent trace ‘off-target’ shRNA activity in either eight-shRNA set. Alternatively, these
differences may be attributable to small differences in the degree of target gene knockdown
conferred by distinct hairpins. Consistent with the latter argument, shRNAs in the second set
frequently showed reduced target gene suppression (Supplementary Fig. 1 and
Supplementary Table 1) and yielded more subtle biological effects, as evidenced by the
relative RI values seen in shRNA pairwise comparisons (Fig. 4b).

To extend our eight-shRNA signature approach in a scalable and stringent manner, we
revisited a common problem in machine learning. A nonparametric classification method
like K-nearest-neighbors will classify any test compound according to its closest
neighbor(s), even if the two compounds are quite distinct. Thus, it becomes difficult to
determine how distantly a given compound can reside from a reference category of drugs
and still be considered to share a similar mechanism of action (Fig. 5a). To overcome this
problem, we took advantage of the carefully selected mechanistic diversity of our training
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set to create specific empirical cumulative distribution functions for each drug category (Fig.
5b and c). This allowed us to determine whether a test compound was likely to belong to
either an existing or a new drug category—a process critical to the broader applicability of
this approach.

To determine whether this methodology could correctly categorize chemotherapeutics
absent from our initial reference set, we examined a set of 16 additional anticancer drugs
(Table 1 and Supplementary Fig. 6). In each case, the eight-shRNA approach successfully
grouped drugs according to their mechanism of action. Importantly, when compounds that
represent new drug categories were examined, they were not misclassified into the ‘nearest’
drug category. Rather, they were identifiable as distinct agents that were significantly
different from all other drug categories. Consequently, although this eight-shRNA panel was
assembled on the basis of responses to seven drug classes, it was also successful in
predicting other classes of chemotherapeutics when the training set was updated with new
reference compounds. For example, the eight-shRNA signature accurately predicted that the
proteasome inhibitor gliotoxin belonged to a drug category not represented by any of the
existing reference drugs. However, when the proteasome inhibitors bortezomib (PS341) and
MG132 were used to update the training set, the eight-shRNA signature was able to
successfully classify gliotoxin and epoxomycin as proteasome inhibitors (Table 1). The
eight-shRNA set could be similarly trained to identify two entirely distinct drug categories
—Hsp90 inhibitors and EGFR inhibitors— neither of which was used to create the eight-
shRNA reference set. Notably, the eight-shRNA signature could also distinguish functional
drug subclasses within larger targeted classes of therapeutics. For example, the HER2
inhibitors lapatinib and AEE788 and the multikinase inhibitor sunitinib clustered in distinct
categories relative to EGFR inhibitors (Supplementary Fig. 7), despite all of these drugs
belonging to the broader category of tyrosine kinase inhibitors. Although the use of more
optimized sets of shRNAs may be necessary to probe fine details of certain drug categories,
these data suggest that this eight-shRNA set has resolution over a broad range of cytotoxic
activities.

Although the cells used in this study are responsive to a number of targeted
chemotherapeutics, such as EGFR inhibitors, a potential limitation of this approach is that it
lacks resolution for certain compounds requiring cellular targets not present in lymphoma
cells. To determine whether this approach could be adapted to cell lines expressing
targetable genetic lesions, we examined the performance of the eight-shRNA signature in
cells derived from a BCR-Abl-driven model of acute B cell leukemia (B-ALL)35. Strikingly,
a robust functional signature for alkylating agents could be generated in these cells using the
same eight-shRNA set (Fig. 6). Notably, however, the response signature in B-ALL cells
differed from that in lymphoma cells. For example, leukemia cells showed distinct genetic
dependencies on ATR, DNA-PKcs and Bok. Thus, informative signatures can be derived in
distinct cell lines, even if the signatures differ between cell types. Notably, this eight-shRNA
signature may not be optimal for B-ALL cells, as feature reduction from the 29-shRNA
signature was not performed in this context. Additionally, this signature may not have the
same resolution as in lymphoma cells. However, these data suggest that even suboptimal
signatures may provide resolution sufficient to cluster classes of chemotherapeutics.

Discussion
The functional genetic approach described here has similarities to well-characterized
chemogenomic profiling strategies in lower organisms. However, this approach also has
notable advantages over existing genetic approaches for examining drug mechanisms of
action and identifying drug targets. First, this approach is sufficiently sensitive to
differentiate drugs with distinct targets but common downstream signaling pathways. For
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example, TopoI and II poisons produce distinct shRNA sensitivity profiles, yet both
ultimately engage common transcriptional networks. Microarray approaches that focus on
downstream changes in gene expression are, consequently, less able to distinguish between
conventional anticancer agents. In fact, previous microarray studies have shown limited
resolution over a number of frontline chemotherapeutics (Supplementary Table 3). Second,
this approach is unaffected by pharmacodynamic variability, such as distinctions in drug
efflux or detoxification, that obscures comparisons between different cancer cell lines.
Finally, and most importantly, this approach is both simple and tractable. Although
microarray studies suffer from significant variability between experiments and laboratories,
RNAi-based functional arrays are highly reproducible and can be widely disseminated.

Perhaps the most unanticipated aspect of this work lies in the quantity of information that
can be derived from a small set of mammalian loss-of-function phenotypes. This focused
shRNA signature can characterize a diverse range of drug categories at high resolution and
is extendable to completely new drug categories and distinct cell types, suggesting that such
signatures might serve as a tractable approach to screen chemical libraries for diverse
functional classes of small molecules in a high-throughput manner. Although this specific
set of shRNAs may not provide optimal resolution for all cell types or small molecules,
these data also suggest that alternative small sets of shRNAs may yield similar information
content. For example, although this work focuses on cell viability, it is likely that—given
appropriate phenotypic resolution—bioactive compounds affecting diverse aspects of
biology can similarly be interrogated with distinct targeted sets of shRNAs.

METHODS
Cell lines and drugs

Eμ-Myc p 19Arf−/− mouse lymphoma cells were cultured in B cell medium as described15.
MM1S and RPMI8226 cells were cultured in RPMI medium supplemented with glutamate
and 10% (v/v) FBS. Drugs were obtained from Sigma, Tocris, Calbiochem, VWR, LC
Laboratories and other suppliers. shRNA vectors were generated as described36,37. p185+
p19Arf−/− acute lymphoblastic leukemia cells were derived and cultured according to the
procedures outlined in ref. 35.

Drug treatment and flow cytometry
Eμ-Myc pl9Arf−/− cells were counted and seeded at 1 million cells per ml in 48-well plates
and treated with various concentrations of drugs. To approximate therapeutic situations in
which drug dose decreases over time, half of the volume from each experiment was removed
and replenished with fresh medium every 24 h. Cells were analyzed by fluorescence-
activated cell sorting (FACS), with propidium iodide as a viability marker. LD80–90 of
drugs are defined as concentrations at which the lowest viability reading out of three FACS
time points (24, 48 and 72 h) is between 10% and 20%. After we determined drug dose, Eμ-
Myc p19Arf−/− cells were infected with retroviruses encoding shRNAs targeting particular
genes. Individual infected cell populations were counted and seeded at 1 million cells per ml
in 48-well plates and treated with drugs using the aforementioned protocol. At 72 h, treated
and untreated cells were analyzed by flow cytometry. GFP percentages of live (PI-negative)
cells were recorded and used to calculate relative resistance index. To avoid outgrowth of
untreated control cells, we typically seeded them at 0.25 million per ml, and 75% of medium
was replaced at 24 and 48 h.

Calculation of relative resistance index (X)
To compare the relative level of chemoresistance and sensitization conferred by each gene
knockdown, we introduced the concept of RI (see definition above), to more accurately
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analyze the GFP competition results. We define the value of RI as X. The biological
meaning of this factor X is that in a mixture of uninfected and infected (knockdown) cells,
the infected (knockdown) cells will be X-fold as likely to survive drug treatment when
compared to uninfected cells. By our definition of X, if one out of n uninfected cells survives
a drug treatment, then X our of n infected cells should survive. If we define the total number
of uninfected and infected cells as T and the GFP percentage of untreated population as G1,
then the number of surviving, uninfected cells (un) can be defined as n − un = T × (1 − G1)
× 1/n, and the number of surviving, infected cells (in) can be defined as n − in = T × G1 × X/
n. Hence, the GFP percentage of the treated, surviving population (G2) can be calculated as
G2 = (n − in)/((n − un) + (n − in)). From this equation, we can derive that X = (G2 − G1 x
G2)/(G1 − G1 x G2). This equation was used in our studies to compute RI values.

Enhanced K-nearest-neighbors methods
K-nearest-neighbors modeling is a weighted-voting methodology in which the proximity to
the training set is used to predict drug class membership. We include this analysis for four
reasons. (i) It provides independent validation of the clustering result. (ii) It allows us to
quantify the predictive power of the reference set through leave-one-out cross-validation.
(iii) Leave-one-out cross-validation allows us to perform a feature reduction to discover
smaller gene sets. (iv) It provides an objective prediction of classes for new compounds.

K-nearest-neighbors predictions were performed using a correlation-based metric and a
consensus voting scheme. The MATLAB knnclassify.m function was used as a basis for the
feature reduction search, as well as cross-validation and predictions. The cross-validation for
the K-nearest-neighbors approach was done by systematically leaving out one of the 18
drugs at a time in the final dataset (Fig. 1c) and using the remaining 17 to predict the left-out
drugs’ identities.

To reduce the size of the feature set to a smaller group of key shRNAs, we randomly
searched a subset of 2,000 unique shRNA sets of increasing size. Sampled subsets were
scored on the basis of their ability to cross-validate. We then performed a much more
extensive search (> 50,000 subsets) of eight shRNA signatures that would be able to
correctly classify all of the drugs in our reference set. The shRNA subsets that cross-
validated at 100% were then ranked by their least-squares correlation with the distances
between drugs in the 29-shRNA signature, and the eight-shRNA set with the highest
correlation score was chosen for later experiments.

A K-nearest-neighbors-based approach will always yield a prediction of drug class on the
basis of proximity. Therefore, to evaluate the similarity of a new drug to its predicted class
we developed a linkage ratio p-value test. Briefly, we calculated the initial cluster size of
each of the seven drug groups (Fig. 1c) by evaluating the average of all pairwise linkage
distances amongst all members of a drug group. When a test compound was predicted to
belong to a drug group on the basis of proximity, then the cluster size of that particular drug
group was calculated again with the new test drug included. A linkage ratio was then
calculated by comparing the cluster size with and without the tested compound. A linkage
ratio of less than one indicated that the addition of the drug to a cluster made the average
distance between drugs in that category smaller, whereas a linkage ratio greater than one
indicated that the cluster expanded. An obvious tradeoff exists between cluster expansion to
accommodate modestly distinct compounds with highly homologous mechanisms and
expanding the definition to a point where one masks the existence of a completely new
compound. This tradeoff varies among drug classes as a function of the inter-class distances.
To estimate the significance of a K-nearest-neighbors prediction, as well as to determine
whether a compound had a mechanism of action different from those of our original seven
drug groups, we sampled the negative control distributions of drug classifications. This was
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done on a class-by-class basis by taking the previously studied compounds and forcing them
to erroneously classify. We then calculated a linkage ratio for all of these erroneous
classifications. On a class-by-class basis we fit a normal distribution to the range of
misclassified linkage ratios. The value of the cumulative distribution function was used to
calculate the p-value of the new classifications (Fig. 5c), using the null hypothesis that the
linkage ratio for a prediction is identical to the linkage ratios of the negative control
distribution. The complete MATLAB algorithm used to perform this analysis is provided as
the “Drug Prediction Score.M” file found at http://web.mit.edu/icbp/data/index.html.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Functional characterization of chemotherapeutic drugs according to patterns of
shRNA-conferred drug resistance or sensitivity
(a) A diagram showing the principle of GFP-based competition assays. Suppression of genes
that alter drug sensitivity leads to changes in the percentage of GFP-positive cells after
treatment, which can be used to calculate the RI (see Methods). (b) Unsupervised clustering
of RI values of 15 reference compounds. Agglomerative hierarchical clustering was
performed on log-transformed RI values for the initial 15 reference drugs, using a
correlation metric and centroid linkage. Bootstrapping data is shown to indicate clustering
robustness. ‘Approximately unbiased’ (AU) values from the PVclust function are indicated
next to the relevant branches in the clustergram. (c) The branching pattern for SAHA, DAC
and Rosco and the 15 reference chemodrugs. Numbers below the dendogram demarcate
drug categories. (d) A heat map showing the response of cells expressing shRNAs targeting
the Bim transcriptional regulator Chop and Foxo3a to SAHA and DAC. Log-transformed RI
values are shown.
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Figure 2. RNAi-based characterization of a compound derivative of bendamustine
(a) The chemical structures of bendamustine and a chemical derivative, CY190602. (b)
Dose response curves comparing the viability of the multiple myeloma cell lines
RPMI-8226 (top) and MM1S (bottom) following treatment with bendamustine or
CY190602. (c) RI patterns for bendamustine, CY190602 and a related compound,
chlorambucil (CBL). Bendamustine and CY190602 were used at LD80–90 of 110 μ|M and
1.4 μM, respectively. (d) The branching pattern for the 18 reference drugs plus
bendamustine and CY190602.
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Figure 3. Identification and functional characterization of ill-defined genotoxic drugs
(a) A heat map showing the response of cells expressing shATM, shChk2 or shp53 to 16
genotoxic (upper panel) and 15 nongenotoxic (lower panel) chemotherapeutics (see
Supplementary Table 2 for drug abbreviations). (b) The shATM-Chk2-p53 response
signature for apigenin (APG) and NSC3852 (NSC). (c) The branching pattern for the 18
reference compounds plus APG and NSC. APG clusters with the TopoII poisons Dox and
VP-16, whereas NSC clusters with the TopoI poison CPT. (d) a comparison of the shTopoI
and shTopoII response signatures for APG and NSC3852 with response signatures derived
from established TopoI (CPT and CPT11) and TopoII poisons (Dox, Mito and VP-16).
Although NSC3852 and APG show response patterns characteristic of TopoI and TopoII
poisons, respectively, none of the other genotoxic drugs showed either of these resistance
and sensitivity patterns. (e) A graph showing the number of surviving shTopoII, shTopoI or
vector control-expressing cells 12 days after drug treatment with APG or NSC3852. In each
case, one million cells were plated before treatment. Data shown are mean ± s.e.m. from
three independent experiments.
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Figure 4. A feature reduction identifies a reduced eight-shRNA set
(a) Analysis of the dataset used for Figure 1c, using a randomized search strategy. The graph
shows the relative efficacy of drug prediction as a function of increasing shRNA subset size.
The maximum predictability for 2,000 iterations at each shRNA subset size is shown. (b) a
graph showing the correlation between enrichment or depletion of cells expressing shRNAs
from the original eight-shRNA set and cells expressing shRNAs from the additional eight-
shRNA set after drug treatment. Each square represents the log2RI values following single-
drug treatment of cells expressing an original shRNA (x axis) or the second shRNA
targeting the same gene (y axis). The slope of the best-fit line is 0.64, indicating that the
absolute RI values are consistently lower in cells expressing hairpins from the second eight-
shRNA set. (c) A heat map showing the relative enrichment (red) or depletion (blue) of a
second set of shRNAs (labeled with asterisks) targeting each of the genes in the eight-
shRNA signature. The associated dendograms show clustering between shRNA pairs, as
well as clustering of small molecules into the same seven categories predicted from the 29-
shRNA signature.
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Figure 5. A reduced shRNA signature can accurately predict drug mechanism of action
(a) A diagram of the possible outcomes for a test compound when it is compared to the
training set. A test compound could be interpolated within the definition of a drug category
that is provided by the training set (left). Alternatively, a test compound could be outside of
the drug category (right). Our probabilistic nearest-neighbors algorithm attempts to define
an ‘acceptable’ category extension. (b) A schematic depicting the methodology behind
probabilistic nearest-neighbors predictions. An initial training set with empirically validated
drug categories is used to calculate the drug category-specific cluster sizes. This same
methodology is used for compounds whose known mechanism of action is distinct from a
particular drug category. (c) The increase in the drug category definition that is observed by
forcing these empirically derived negative controls to cluster in an erroneous category is
used to build a null distribution and an empirical cumulative distribution function.
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Figure 6. Adaptation of the eight-shRNA signature to a distinct cell line
A heat map comparing the eight-shRNA response signatures of Myc p19Arf−/− lymphoma
cells and p185+ BCR-Abl leukemia cells following treatment with alkylating agents in a
model of acute lymphoblastic leukemia. The eight-shRNA signature from p185+ BCR-Abl
p19Arf−/− leukemia cells can identify CDDP as an alkylating agent when CBL and MMC are
used as a reference set.
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