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Abstract. A Positive Matrix Factorization receptor model targeted and cost-effective approaches to protecting public
for aerosol pollution source apportionment was fit to a syn-health and welfare, an understanding of the association be-
thetic dataset simulating one year of daily measurements ofween PM s sources and morbidity and/or mortality needs
ambient PM s concentrations, comprised of 39 chemical to be developed.

species from nine pollutant sources. A novel method was 1.5 penver Aerosol Sources & Health study (DASH) has

developed to estimate model fit uncertainty and bias at th%een undertaken to understand the sources of it are
daily time scale, as related to factor contributions. A circular 4 i o401 +0 human health P filter samplés are col-

block bootstrap is used to c_:reate replicate datasets, with th?ected daily from a centrally located site in Denver, CO. Spe-
same receptor model then fit to the data. Neural networks arg; . 4 PM 5 is quantified including sulfate, nitrate, bulk el-

trained to classify factors based upon chemical profiles, 4¥mental and organic carbon, trace metals, and trace organic
opposed to correlating contribution time series, and this clas- ' '

T : . ompounds. These speciated PMlata are used as input to
sification is used to align factor orderings across the modefl receptor model, Positive Matrix Factorization (PMF), for
results associated with the replicate datasets. Factor contr Sollution source a;pportionment The PMF model fit yi'elds
bution uncertainty is assessed from the distribution of resunicjharacterizations of pollution soﬁrces Knowrigctors with
associated with each factor. Comparing modeled factors Wm}espect to their contributions to total rr;easuredgl?,l\Ias well
input factors used to create the synthetic data assesses bi '

Th its indicate that variabilitv in fact tributi % their chemical profiles. Ultimately, an association will
€ resulis indicate that variabiiity in factor contribution €s- 1, explored between the individual factor contributions and

Ehort-term, adverse health effects, including daily mortality,

bution estimates can have small associated variability acros§,iy hospitalizations for cardiovascular and respiratory con-

results yet also be very _biased. These findings are likely Oleaitions, and measures of poor asthma. For example, histori-
pendent on characteristics of the data. cal records of daily hospitalizations due to respiratory prob-
lems might be regressed against the daily concentrations of
PMa s pollution from diesel fuel combustion (as estimated
1 Introduction by PMF) over the same time span. Having measures of un-
certainty associated with the contribution of diesel fuel com-
Air pollution comprised of particulate matter smaller than pystion to PM s, at the daily time scale, may lead to more
2.5um in aerodynamic diameter (F) has been associated rgjiaple characterization of the role diesel fuel combustion
with a significant increased risk of morbidity and mortality nas in daily health effects data.
(Dockery et al., 1993; Pope et al., 2002; Peel et al., 2005). i .
Existing regulations have focused on average and peaiPM PMF is a factor analytic method developed by Paatero and

concentrationsi(g m~3). To help policy makers design more Tapper in 1994 (Paatero and Tapper, 1994) that has been
widely used for pollution source apportionment modeling

(Anderson et al., 2001; Kim and Hopke, 2007; Larsen and

Correspondence tal. G. Hemann Baker, 2003; Lee et al., 1999 Polissar et al., 1998; Ramadan
BY

(josh.hemann@colorado.edu) et al., 2000). The objective of this paper is to present a novel
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method that has been developed to quantify uncertainty andved from published source profiles and source contributions
bias in a PMF source apportionment model as it is applied taconsistent with the Denver area. The solution from applying
speciated P data. Uncertainty in a PMF solution exists PMF can be compared with “known” profiles and contribu-
at a number of levels and is important to quantify, especiallytions, allowing estimates of bias to be computed.

if the solutions will inform environmental and health policy A circular block bootstrap generates additional data by re-
decisions. sampling, with replacement, from the original synthetic mea-

Uncertainty can stem from the data and from the PMFsurement series. Each new dataset, or replicate, is again fit
model itself. With respect to the data, uncertainty in the so-by the PMF model to apportion the BMmass to factors.
lution is imparted through measurement error as well as ran- The first novel aspect pertains to how factors are sorted
dom sampling error. For the PMF model, there is generallybetween solutions. For each solution the factors should cor-
“rotational ambiguity” in the solutions (i.e. solutions are not respond to the same real-world pollution sources. The fac-
unique); further, solutions based upon the same data can vatygrs need to be aligned such that “factdrin each solution
depending upon how the model parameters are set. Past studiways refers to the same factor. To accomplish this factor
ies have considered these aspects, primarily by using the stalignment, or matching, the standard approach has been to
tistical method of the bootstrap to analyze model fit results.use scalar metrics like linear correlation to match a factor
For example, Heidam (1987) considered the uncertainty infrom one solution to the “closest” factor in another solution.
factor profiles due to receptor model uncertainty by varying This is the approach taken by the EPA PMF 1.1 software,
the model parameters in models fit to bootstrapped datasetswhere it is specifically the time series of factor contributions

The Environmental Protection Agency’s Office of Re- that are matched between solutions. In contrast, the present
search and Development distributes two software productswork takes the novel approach of using Multilayer Feed
EPA PMF 1.1 (Eberly, 2005) and EPA Unmix 6.0 (Norris Forward Neural Networks (NN), trained to perform pattern
et al., 2007), which incorporate the bootstrap to analyze rerecognition, to align factors between PMF solutions. Further,
ceptor model fit results. The software can be used to assesssing the intuitive notion that pollution sources are character-
uncertainty in factor profile estimates and has been used bized best by the chemical species they emit, the matching is
studies such as Chen et al. (2007) and Olson et al. (2007) tbased on factors’ profiles rather than their contribution time
characterize sources of BM. Few studies, however, have series. The NN approach is a robust factor matching tech-
addressed uncertainty in factor contribution estimates. Twaique: it avoids the sensitivity to outliers that is problematic
examples are Nitta et al. (1994) and Lewis et al. (2003),when using measures such as linear correlation and replaces
though the estimates come from different source apportionit with a method that is capable of capturing linear as well as
ment models and pertain to average contribution variability. non-linear relationships.

The method presented in this paper estimates, at the mea- The second novel aspect in the method presented here
surement time scale, bias and variability due to randomis the tracking of the measurement days resampled in each
sampling error in factor contribution estimates. Replicatebootstrapped dataset. Through this bookkeeping it is possi-
datasets are created using a circular block bootstrap, anble to arrive at a collection of PMF results for each factor's
the subsequent application of two novel techniques makesontribution on each day. Accordingly, descriptive statistics
such estimation possible. First, neural networks are used focan be computed for each factor contribution on each day.
matching factors across PMF results on that data. Second
the measurements resampled across the replicate datasets aré Positive Matrix Factorization
tracked within the PMF solutions. This discussion describes
the method in the context of application to a synthetic;cBM ~ PMgs pollution is typically comprised of dozens of chemical
dataset, which was designed to simulate DASH data, fit byspecie emitted from multiple sources. The concentration of
the PMF model. Using synthetic data allows assessment ogach species may be treated as a random variable observed

model fit as well as a way to validate the method itself. over time. The statistical technique faictor analysiscan be
used to explain the variability in these observations as linear

combinations of some unknown subset of the sources, called
2 Methodology factors. In traditional factor analysis approaches, including
Principal Components Analysis, the variance-covariance ma-
Presented here is a method of assessing uncertainty in souroéx of the observations is used in an eigen-analysis to find the
apportionment model results using two different measuresfactors that explain most of the variability observed. The un-
bias and variability due to random sampling error. The certainty in the observations, for all variables, is assumed to
method goes beyond computing these measures in terms e independent and normally distributed. These assumptions
“average values” and gives estimates at the measuremenire often not valid in the context of air pollution measure-
time scale. ment data. In contrast, PMF — a receptor-based source appor-
A synthetic time series of daily Ph4 measurements is tionment model — offers an alternative technique that is based
used in which the concentrations of chemical species are dedpon a least squares method, and measurement uncertainties
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can be specific to each observation, correlated, and nonvalues range betweenl and 1, with positive values causing
normal in distribution. Further, the factors resultant from extremes in th€& matrix (values near 0 or 1) and negative val-
PMF need not be orthogonal, which is an important quality ues causing extremes in ti&matrix. In the present work,
when trying to associate modeled factors to real-world pollu-FPEAK is zero for all PMF2 solutions, which corresponds to
tion sources that can be highly temporally correlated but arehe default setting.

nonetheless important to characterize separately (e.g. diesel

versus gasoline fuel combustion). 2.2 Synthetic data
Given a matrix of observed PM concentrationsX, PMF
attempts to solve Given that the results of pollution source apportionment
models may ultimately be used as critical components of en-
X=GF+E (1) vironmental policy and regulatory decisions, it is especially

important to assess their quality. One approach for evaluating
receptor models is the use of synthetic data, which is defined
as simulated PMs measurements rather than actual obser-
vations (Willis, 2000). Predefined sources are used, along
with their respective contributions and profiles, to create the
G andF matrices in Eq. (2). Witls andF definedX can be
calculated directly and given as input (along with uncertainty
estimates) to the PMF2 software, where the resul&and
F matrices can then be compared with the actual values to
P assess model fit.
Ejj = X;j — Z GikFyj (2 The method of creating synthetic datasets followed in this
k=1 paper is described in detail in Brinkman et al. (2006) and
G andF are found through an alternating least squares alVedal et al. (2_007). Bri_efly, nine poIIutanF sources were u_sed
gorithm that minimizes the sum of the normalized, Squared(TabIe 1), which contributed concentrations of 39 chemical

by finding the matrice& andF that recoveiX most closely,
with all elements ofc andF strictly non-negativeG is the
matrix of factor contributions (or “scores” in traditional fac-
tor analysis terminology), whei@;; is the concentration fac-
tor k contributed to the total Pt observed in sample F

is the matrix of factor profiles (or “loadings”), wherg; is
the fraction at which specigsmakes up factok. Finally, E

is the matrix of residuals defined by

residualsQ species (Table 3), over 365 synthetic sampling days. The
synthetic measurements were assumed to come from a single
L& (Ej 2 receptor site. Table 1 also lists the references used to generate

Q= Z Z (S_u) (3) the annual contributions, chemical profile, temporal patterns

i=1j=1 and variability for each source. Table 2 shows the lag zero

whereE;; is weighted bys;;, the uncertainty associated with C€ross correlations between the source contributions. With re-
the measurement of theh pollutant species in thesample. ~ SPect to PMF modeling, the relatively high cross-correlations
The ability to weight specific observations with specific un- between some of the input source contribution time series has
certainties allows PMF to handle data that include heterogethe implication that some of these sources may be harder to
nous measurement uncertainty, outliers, values below meatleanly separate from others.
surement detection limits, and missing values. As such, PMF Distinct time series for the contributions from each source
can often yield better results than traditional factor analysiswere generated by starting with average contribution es-
methods (Huang et al., 1999). timates from preliminary DASH studies and the Northern
An algorithm for implementing PMF is available as a com- Front Range Air Quality Study (Watson et al., 1998), then
mercial software library, PMF2 (Paatero, 1997). The work adding day-to-day variations reflecting both random variabil-
presented here uses PMF2 version 4.2, and specifically, thiéy and hypothesized weekly or seasonal patterns, as appro-
pmf2wopt executable file (Paatero, 2007). PMF2 has numerPriate. Daily totals for the nine source contributions were
ous optimization parameters that can be set by the user, arf@Prmalized to match actual daily Pi levels observed in
methods of choosing these values have been published elsEenver in 2003. It should be noted that the presence of ad-
where (Paatero, 2000; Paatero et al., 2002, 2005). Since th@ditional sources, such as secondary organic aerosols, could
focus of this paper is on a method of assessing uncertaintgomplicate application of PMF to observed data. The ma-
and bias in PMF solutions, the discussion of fine-tuning thetrix of data uncertaintiesS from Eq. (3), is computed as
numerous algorithm parameters is kept to a minimum. Twofollows. Measurement detection limits, detection limit un-
PMF2 parameters are especially important to the PMF modefertainty, and measurement uncertainty associated with typ-
fit and deserve mention. First, the number of factors in theical analytical techniques used to speciate BMiter sam-
model, p, must be set by the user. In the present work, eightPles (lon Chromatography, Thermal Optical Transmission,
and nine factor solutions are considered, with the primaryand Gas Chromatography/Mass Spectrometry), were incor-
focus on the results for the nine factor solutions. The otherPorated into the PMF input via
important parameter is FPEAK, which controls the rotational
freedom of the possible solutions. It is advised that FPEAKS;; = \/(a., Xl~.,~)2 + (8; D.,~)2 4
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Table 1. Synthetic PM 5 sources.

Source References

Secondary Ammonium Sulfate  Lough (2004)
Secondary Ammonium Nitrate  Lough (2004)

Gasoline Vehicles Watson et al. (1998); Chinkin et al. (2003);
Cadle et al. (1999); Hildeman et al. (1991); Rogge et al. (1993a)
Diesel Vehicles Watson et al. (1998); Chinkin et al. (2003);
Hildeman et al. (1991); Rogge et al. (1993a); Schauer (1998)
Paved Road Dust Watson et al. (1998); Chinkin et al. (2003); Hildeman et al. (1991);
Rogge et al. (1993b)
Wood Combustion Watson et al. (1998); Fine et al. (2004)
Meat Cooking Watson et al. (1998); Schauer et al. (1999)
Natural Gas Combustion Hildeman et al. (1991); Hannigan (1997); Rogge et al. (1993d)
Vegetative Detritus Hildeman et al. (1991); Hannigan (1997); Rogge et al. (1993c)

Table 2. Source contribution cross-correlations, Lag=0.

Amm Sulfate Amm Nitrate Gasoline Diesel RoadDust Wood Meat Natural Gas Veg

Ammonium Sulfate 1 0.55 0.89 0.57 0.73 0.24 0.81 0.68 0.49
Ammonium Nitrate . 1 0.39 0.26 0.32 0.82 0.35 0.8-0.15
Gasoline Vehicles . . 1 0.62 0.74 0.13 0.81 0.64 0.54
Diesel Vehicles . . . 1 0.61 0.08 0.28 0.33 0.31
Paved Road Dust . . . . 1 0.13 0.57 0.5 0.37
Wood Combustion . . . . . 1 014 0.77-0.34
Meat Cooking . . . . . . 1 0.64 0.53
Natural Gas . . . . . . . 1 0.08
Vegetative Detritus . . . . . . . . 1

where for specieg, o ; is the measurement uncertaingy, is of the statistic. The properties of this distribution are then
the detection limit uncertainty, anfd; is the detection limit.  used to make inferences about the parameter of interest. In
Table 3 contains the, 8 and D associated with each species. the present context, each pollutant species’ time series repre-
The §;; uncertainties were incorporated into the final datasents realizations of a random variable. ThandG matri-

matrix X" with the following formula ces resulting from PMF's fitting of these data are functions
) of these random variables, thus, each element of those ma-
Xl-j = Xij + Sij Zij %) trices may be considered a statistic. Previous studies using

h . q berd dard IPMF have focused on analyzing tRematrix, the matrix of
whereZ;; is arandom number drawn from a standard norma factor profiles. This discussion takes a different tack, with

distribution. If X! was less than the detection limit associ-
ated with measuring specigs then a value of one-half the
detection limit was substituted in the final data matrix.

the statistic of interest being each element of Ghenatrix,
the matrix of factor contributions over time.

2.3 The bootstrap 2.3.1 Dependent data considerations

The bootstrap is a computationally intensive method for es-Much of bootstrap theory is based upon the assumption that
timating the distribution of a statistic, the statistic itself be- the data are comprised of observations of independent and
ing an estimator of some parameter of interest (Efron, 1979)identically distributed (iid) random variables. Time series
The essence of the method is to create replicate data by redata, however, are typically serially correlated. Singh (1981)
sampling, with replacement, from the original observationsshowed that the bootstrap can be inconsistent in estimat-
of a random variable. For each replicate dataset the statistilg the distribution of statistics based upon dependent data.
of interest is computed, and the distribution of these valuesSince then, numerous modifications of the original iid boot-
serves as an estimate for the random sampling distributiorstrap have been formulated to better handle dependent data
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. Distribution of p for AR(p) Models for All Species | s
Table 3. Synthetic PM 5 species, measurement detection limits 0 ]  formass 3 |
(D), measurement errora), and detection limit uncertaintieg).

Species # Species Name D o B
K‘

(ngn®) (%) (%) g
1 Elemental Carbon 13 10 197 E
2 Organic carbon 3.6 14 100
3 Nitrate 0.094 5 296
4 Sulfate 0.20 3 614
5 Ammonium 0.22 6 1057
6 n-Tricosane 0.97 8 125
7 n-Tetracosane 1.4 9 186
8 n-Pentacosane 11 8 209
?0 E_Eee;?:g:::fe 1111 2 2212 Fig. 1. Distribution of the lag dependence parameterfor the 39
11 n-Octacosane 1.2 4 207 Ppollutant species.
12 n-Nonacosane 0.96 4 234
13 n-Triacontane 0.92 6 185
14 n-Hentriacontane 0.92 8 145 In the EPA's bootstrap implementation, as well as this
15 n-Dotriacontane 023 9 108  study, measurement days are resampled. In the present case,
16 n-Tritriacontane 016 9 96 realizations of a composite random variable comprised of
17 n-Tetratriacontane 0.093 8 93 . .
18 Oleic acid 66 14 39 39 pollutant species are resampled, with replacement, from
19 n-Pentadecanoic acid 14 15 235 the original synthetic data. To investigate an appropriate
20 n-Hexadecanoic acid 48 16 116 bootstrap block size the serial correlation of each pollutant
21 n-Octadecanoic acid 26 14 137  gpecies in the synthetic dataset, as well as totaj PMass,
22 Acetovanillone 0064 14 212 a5 examined. An Auto Regressive (AR) time series model
23 Coniferyl aldehyde 1.9 14 86 . L . .
o4 Syringaldehyde 062 12 139 Wwas fit to each species’ series and the optimal lag pqrameter,
25 Acetosyringone 097 11 468 P,was found, withp constrained between 1 and 14. Figure 1
26 Retene 0079 12 316 shows the distribution of these lag values.
27 Alkyl Cyclohexanes 0.085 8 123 While concentrations for most species were serially corre-
28 Benzo[K]fluoranthene 0.0068 10 649  |ated with only the previous two day’s concentrations, some
29 Benzo[b]fluoranthene 0.0068 10 649 ¢necies had longer lag-dependence. The aggregate mass of
30 Benzole]pyrene 0.0056 15 272 .
31 Indenof[1,2,3-cd]pyrene 0017 13 1052 all species had lag-three dependence. It has been shown that
32 Indeno[1,2,3-cd]fluoranthene 0.021 13 1052 the consistency of approximations yielded by the block boot-
33 Benzo[ghi]perylene 0.023 10 169 strap is sensitive to block size, with optimal block size criti-
34 Coronene 0021 13 23  cally dependent upon the size of the data as well as the statis-
35 Cholestanes 021 8 65 ic for which the distribution is being estimated (Hall et al.,
36 Hopane 0.045 17 202 i .. . T .
37 Norhopane 0050 19 113 1995; Lahiri, 2001). (_3|ven these_: findings, and that pra_lc'_u-
38 Homohopanes 0013 18 342 cal methods for choosing block size are based on examining
39 Oxygen 41 3 106 the lag-dependence in the data (Politis and White, 2004), it

seems difficult to choose a single block size for resampling
measurement days of speciated PM data.

An additional complication in using the block bootstrap
(Carlstein, 1986; Kunsch, 1989; Liu and Singh, 1992). Onewith such data is that while all block bootstrap schemes are
approach often used for time series data is to resample blockdesigned to handle serial correlation they also assume the
of successive observations. If the blocks are of sufficientdata are from a stationary stochastic process. To the authors’
length,/, and the series is only weakly dependent, then theknowledge, there are no published results in which a block
observations within each block may be considered indepenbootstrap was used on speciated PM time series data that had
dent of the observations within the other blocks. Further, iftested for, or transformed to, stationarity prior to resampling.
the series is stationary then all blocks will share the seme This assumption is ignored in the present work, but it de-
dimensional joint distribution. These two conditions allow serves consideration in future applications of the block boot-
the blocks themselves to be treated as independent and idestrap.
tically distributed observations to which the iid bootstrap can  The present work uses 1000 replicate datasets, each gener-
be applied. This approach is currently used by the EPA PMFated by the circular block bootstrap (CBB) of Politis and Ro-
1.1 software tool, which uses a 3-day, Moving Block Boot- mano (1992) with a block sizé, of four. Circular refers to
strap (MBB). “wrapping” the data end-to-beginning such that for a length
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N series,Xn+x=Xk. A block length of four was chosen using linear correlation to match a given factor from a boot-
since the lag-dependence for mass was three days, and tlstrap solution (or a factor from another analysis method) to
majority of species had lag-dependence of five or less dayghe “closest” factor in a base case solution.

As an example, to create a bootstrap replicate data mtrix There are several concerns with this approach. First,
letY be a copy of the original matriX, and append the first “closeness” is measured with a scalar metric that is highly
b-1 rows ofX to the bottom ofY. Divide the rows ofY into sensitive to outliers. Second, the bootstrap replicate data sets
N consecutive sizé blocks. If X; andY; denote théthrow  will not preserve the temporal patterns seen in the original

of X andY, respectively, then the blocks would be data when viewed over the course of the entire sampling pe-
riod (although there are block bootstrap methods that seek
block1: Y1, Y2, Y3, Y4=X1, X2, X3, X4 to address this). Correlation ceases to be a useful measure
block2: Yz, Y3, Y4, Y5=X2, X3, X4, X5 once there is no temporal consistency between the contribu-
tion time series being compared. Third, there are no clear
blockN: Yy, Yy 11, Yny2. Yn43=Xn, X1, X2, X3 rules for what constitutes sufficient correlation, especially in

cases where two factors in one bootstrap solution are highly

ConstructX* by selectingN /b blocks randomly, with re- .
placement, fronY. Construct an associated replicate matrix _(or even poorly but equally) correlated with the same factor

of uncertaintiesS*, by selecting these same blocks fr@&n g‘rg&e i?]afevsggreestﬂg“?2&;?§ngf$n%f;th§£§tgg wc\)”ctec};o?féz
Note that if N /b is not an integer, round up and truncate as ging, P

needed. For example, in the present case Wit865 and e 'Is'flzar?g;:nr]tdd?s]zltjcshs:gr?tg::. loys an approach that the au-
b=4, 92 blocks would be chosen to crexteé The last three P pioy PP

elements of the 92nd block would not be used, yielding a to_thors: _belleve Fo be novel and robust when applied to aerosol
pollution data: neural networks are used to match factors be-

tal of 365 rows (measurement days) resampled fKanim- tween bootstrap solutions and the base case solution based
portantly, under CBB resampling each ronxohas the same W otstrap sofutions as S€ solutl S
upon their profiles. Matching on profiles addresses the sec-

ﬂggartgggrﬁgli?g?ﬁ;ﬁisr?r;gg;’ which is not the case underond issue noted above, while the use of neural networks

rather than correlation address the first and third issues. The
need to classify a measured spectrum (profile) with a known
reference spectrum is a problem found in multiple scientific
In the following results an important component in imple- Settings, most notably in the analysis of stellar spectra and
menting the bootstrap is the tracking of days resampled irflata from hyperspectral remote sensing. Findings in these
each replicate dataset. Since the essence of bootstrappingfi§/ds may be useful in the modeling of aerosol pollution data
resampling with replacement it is possible that for any givenand are considered briefly. Work by van der Meer (2006)
replicate dataset some synthetic measurement days are iffund that a spectral similarity measure based on correla-
cluded multiple times and other days are not included at allion was more sensitive to noisy data than other traditional
By keeping track of which days are resampled in which repli- Measures based on Euclidean distance or spectral angle. Fur-
cate dataset it is possible to assess factor contribution uncetber, Shafri et al. (2007) reported that neural networks were

2.3.2 Record keeping

tainty and bias at the daily time scale. accurate at classifying spectra from remote sensing of trop-
ical forests, especially when compared to measures based
2.4 Factor matching on spectral angle. Tong and Cheng (1999) found that us-

ing neural networks was superior to using maximum corre-
The use of the bootstrap yields a collection of factor contri- lation when classifying gas chromatography mass spectrom-
bution matricesG*, k=1,...,B whereB is the number of etry data. Based on these findings, as well as the findings
bootstrap replicate datasets. The collection of matrices maypresented herein, the authors are confident that using neural
be considered as a single, three-dimensional méifjxvith networks to match factor profiles allows the bootstrap tech-
eIementsG;."., i=0,...,N-1; j=0,...,P-1; k=0,...,B,whereN nique to be better leveraged. The factor matching process
is the number of samples aitis the number of factors (note can be easily automated, adapted to complex patterns and
that theG matrix associated with the original data and “base new, possibly noisy, data, and can avoid subjective “close-
case” solution is also included @&'). While the nature of the  ness” thresholds required when using less robust measures
factors that the PMF2 algorithm finds should be stable acrossike correlation.
the “bootstrap” solutions, the ordering of the factors within
those solutions may be different. Before computing statistics
on the elements o&’, the dimension indexed by must be
sorted, such that across tiBa-1 matrices factoy is always
associated with the same real-world pollution source. The
typical approach to matching and sorting factors has relied
on comparisons between the factor contribution time series,

Atmos. Chem. Phys., 9, 49343 2009 www.atmos-chem-phys.net/9/497/2009/
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2.5 Neural networks in many factors (e.g. organic carbon and oxygen). To make
plots of factor profiles more visibly distinguishable the fol-

Artificial Neural Networks are statistical modeling methods lowing normalization is done,

capable of characterizing highly non-linear functions, doing

so by approximating the behavior of the brain. The term “ar- ,  Fy; 5
tificial” is used to distinguish this numerical approximation Fij =3 ©)
of biological, adaptive, cognition from those biological sys- > Fy

tems. In general, this is understood in statistical modeling, k=1

and Artificial Neural Networks are simply referred to as Neu-
ral Networks (NN). Excellent introductions to the subject can
be found in Haykin (1998) and Munakata (1998).

The specific type of NN used in this study is calledalti-
layer Feed Forward NetworKThis type of network relies on
supervised learningn which the network is given inputs and
learns how to transform it into desired outputs. The learn-
ing is encoded in numerical weights defining the strength
of connection between .elements n 'th('e ngtwqu. We'ghtSFive datasets were used to train the neural networks. One
are found through quasi-Newton optimization incorporated

with the backpropacation method. where “backpropa altion,,dataset was the original synthetic data, with the remaining
propag ) o propag four being bootstrap replicates. PMF was fit to each dataset,
refers to the ground-breaking algorithm developed in the

) with the solution associated with the original dataset being
1970s and 1980s (Rumelhart et al., 1986, Werbos, 1974)the base case. The base case factor profiles were normal-

allowing neural networks to classify linearly inseparable pat-.

terns. A trained network, characterized by its structure anolzed (as described n Sect. 2.5.1), p_Iotted, and wsgally com-
its weights, can then be given novel input and transform it tOpared to the normalized factor profile plots associated with

the correct output. In the present work that transformation isthe bootstrap solutions. For each bootstrap solution the fac-

e . . tors were reordered to match the base case ordering. Figure 2
classification: given a new factor profile, the trained neural

. e . .. shows the end result of this process, with the five factor pro-
networks will classify it as a known type, or possibly classify . )
it as UNKNOWN. file plots used to classify each factor for the neural network

training, as well as the actual profile used to create the origi-
nal synthetic dataset.

where F; . is the relative weighting specigshas in factor

k's profile when considering all other factors. When viewing
factor profiles under this normalization, species common to
many factors are damped and marker species become more
pronounced, as compared to viewing the raw profiles.

2.5.2 Training data

2.5.1 Neural network configuration

In the present work, NN software from Visual Numerics’ 2-6 Method steps

IMSL® C Numerical Library, version 6.0, is used. The struc- Having di dth . f th hod f
ture of the network is three fully connected layers, with 39 aving discussed the major components of the method for

nodes in the input layer, five nodes in the hidden layer, anoanalyzing fact_or cont_ributio_n unc_er_tainty and bi_as, itis help-
two nodes in the output layer. All nodes in the hidden andfuI to summgrlze their relatlgnsh|p in the following steps:
output layers use a logistic activation function. The values Step 1:Using the synthetic P data and measurement
of the two output nodes range between 0 and 1. An outpuyncertamUes, compute a base case PMF model fit thaPhas
of [1,0] indicates a perfect match between an input factorfactors. In the present work®=9.
profile and the profile that particular network was trained to  Step 2: CreateT" bootstrap replicate data matrices, with
classify as a “Yes”. Likewise, an output of [0,1] indicates corresponding uncertainty matrices, and fit each set with
a perfect non-match between an input factor profile and thé®MF. These results, in addition to the base case result, will
learned profile. A “Yes” match is only possible if the first Serve asthe neural network training data. In the presentwork,
output node has a value of at least 0.95, with the second nod&=4.
having a value no larger than 0.05. Step 3:For each training replicate dataset, visually com-
The performance of the network depends heavily upon thepare the normalized bootstrap factor profiles versus the nor-
data used for training. It is well established that neural net-malized base case profiles, and define the factor matching
works can be unstable when data used for training variebetween the results. Reorder the factors to be consistent with
greatly in scale; therefore, transformation and normalizationthe base case factor ordering.
of data are typical preprocessing steps. In this study, factor Step 4:For each factor, train a neural network to learn its
profiles are normalized before being learned by the networksnormalized profile, as well as what is not its profile (thus,
In “raw” form, the rows of the= matrix correspond to factor there will be P networks). For each factor there will Fer1
profiles and each row sums to 1. Viewing factor profiles this profiles to be learned as “Yes” patterns. The remairfig
way can sometimes result in factors that are difficult to dis-profiles associated with the base case results are learned as
tinguish, since some species will be present in large amountéNo” patterns.
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Fig. 2. Plots of five normalized profiles for each factor learned by the neural networks. The thicker, black line represents the profile associated
with the “base case” solution, while the thicker red line indicates the actual profile used to create the synthetic data. The remaining four
colors correspond to factor profiles for “bootstrap” solutions based on resampled data. The factor ordering is now relative to the ordering in
the base case solution.
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Step 5:CreateB new bootstrap rephcate datasets and fit Table 4. Simulation statistics for 8 and 9 factor solutions.
each one with PMF. These results will be used to assess PMF
model fit uncertainty. In the present wok=1000

Step 6: For each bootstrap solution, allow each of the 8 Factors 9 Factors
neural networks to examine each of tRenormalized factor

profiles. Each network should identify a unique factor profile \umber of bootstrap replicate datasets: 1000 1000
wac? i i . ant-n  Number of datasets for which PMF2
as a “Yes”, with all others classifying the profile as “No”. . .
failed to converge to a solution: 2 1

Reorder the factors in the bootstrap solution accordingly. Number of datasets for which factors

Step 7: Parse the factor contribution data by day-factor ¢ouid not be uniquely matched: 45 263
combination. For example, consider examining the bias and —
variability in the PMF solutions for the 3rd factor on day 126, ¢-value Statistics

All B+1 datasets would be searched for where the original fﬂir;ﬁle Size: 38239:’33 32997i2
day 126 was resampled. This collection of indices would Standérd Deviation: 10'1_14 73').11
be used to index into the 3rd column of the corresponding gyewness: 0.10 0.12
solutions’G matrix to get factor 3's contribution on day 126.  kyriosis: 0.28 0.02

The distribution of values is then compared with the actual

contribution used to create the original synthetic dataset.
Note that Step 3 is what establishes the supervisor for the

supervised learninglgorithm used to train the neural net-

work. The role of the neural network is to learn the classifi- in contribution. Figure 4 is a histogram showing the distri-

cation defined by an expert human observer, such that whehution of contributions associated with a specific factor on a

new factor profiles are analyzed, they are classified as wouldpecific day, as an example of how the method allows assess-

the expert. In Step 6, it is possible that a bootstrap factoment of contribution uncertainty at the daily time scale.

can be matched with more than one base case factor, or, per-

haps, it cannot be matched to any base case factor. In either

case, that particular solution is excluded from the collection

of other solutions. In this way, after the last replicate dataset4 Discussion

has been fit by PMF, the collection of solutions correspond

to the case where bootstrap factors were matched uniquely to

base case factors. 4.1 Factor contribution plots

The results of applying the method to the syntheticoBM
data demonstrate several types of PMF solutions. The firstis

Eight and nine factor PMF models fit to the original synthetic exemplifieq by the contribution time §eries PIOtS for factors
data were comparable, in terms of sums of the normalized® @1d 3 (Fig. 3a and c). Here, PMF's solutions, over hun-
squared residualg), the residuals associated with specific dréds of resampled datasets, show low variability and mod-
species, and the physical interpretability of the factors. Severfate bias when compared to the actual contribution time se-
and ten factor solutions were judged less optimal with respecti€S- Factors 2, 4, 6, and 8 represent solutions in which the

to these same measures. Accordingly, descriptive statistic€mporal pattern matches closely with the actual respective

are presented for both eight and nine factor simulations incontribution time series, but the bias is large. Finally, fac-

Table 4. (Thekurtosisstatistic relates to the peakedness of 1rS 5, 7, and 9 have solutions that match poorly with respect
the distribution; a value near 0 is associated witbsokurtic ~ © Pias, variability, and temporal pattern, against the known

distributions, of which the Normaldo2) distribution is the contributions. It is worth recalling from Table 2 that these
most common example.) To facilitate comparison of modelthree factors had moderately strong correlations with each
fitting results with the contributions of the nine sources usedPther in the contribution time series used to create the syn-

to create the synthetic data, all other results pertain to thdhetic data.

simulation using a nine factor solution. Figure 3 presents The preceding results should not be generalized with re-
plots of factor contribution time series for all nine factors. spect to how well PMF models real-world pollution sources,
Each plot shows the base case series, the actual series, aad the results are based on synthetic data. However, if the
two bands defined by empirical quantiles of the simulationsynthetic data is assumed to be a close approximation of
results: the interquartile range and the 5th—95th percentilelata likely to be actually observed, then application of the
range. The plots show the data and quantiles smoothed by method to synthetic data representing a specific situation
5-day boxcar average, in the hopes of focusing attention orcould help identify sources for which PMF contribution esti-
the gross features of the series and not the daily fluctuationsates should be carefully scrutinized.

3 Results

www.atmos-chem-phys.net/9/497/2009/ Atmos. Chem. Phys., 954372009
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Fig. 3. Comparison of PMF bootstrap solutions for factor contributions versus actual factor contributions. Each plot corresponds to a different
factor, showing the actual contribution time series, the time series corresponding to the base case PMF solution, and two bands based on th
empirical quantiles of the bootstrap solutions. The listed coefficient of correlation is with respect to the base case and actual contribution
time series. The factor ordering is relative to the base case solution.

4.2 Uncertainty, variability, and bias sults brought out by fitting PMF to resampled data is likely
different compared to the uncertainty in the results due to
Application of the method to synthetic, daily, measurementsmodel assumptions. For example, how would the solutions
of PM, 5 yields estimates of variability and bias in daily fac- change if seven or eight factors were instead considered; if
tor contributions, which can be used in an uncertainty anal-certain pollutant species were added or removed; if differ-
ysis of the PMF model fit. However, the uncertainty in re- ent assumptions were made about measurement errors; if a

Atmos. Chem. Phys., 9, 49343 2009 www.atmos-chem-phys.net/9/497/2009/
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d. Factor 4 (Diesel Vehicles)
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Fig. 3. Continued.

different source apportionment model was used altogether8et to avoid assumptions about the distribution or “quality”
As Chatfield (1995) notes]t is indeed strange that we of-  of the data. Still, the use of PMF as the receptor model, the
ten admit model uncertainty by searching for a best modelchemical species included in the analysis, and the number of
but then ignore this uncertainty by making inferences andfactors to be characterized, were all choices and are clearly
predictions as if certain that the best fitting model is actu- subjective. The present work seeks to offer a method for as-
ally true” In the present work, as much as possible, modelsessing uncertainty in model fit when it is assumed that the
assumptions have been avoided: input data was not filterechodel is valid, and this distinction should be kept in mind.
after seeing preliminary output, and PMF2 parameters were

www.atmos-chem-phys.net/9/497/2009/ Atmos. Chem. Phys., 954872009
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Fig. 3. Continued.

It is clear from the factor contribution plots in Fig. 3 that have large variability, bias, and generally are in error. Does
the PMF estimates for some factors are badly biased fromPMF perform similarly for observed data, and if so, what
the known contributions. Such bias is assessable because tlebaracteristics of the data might result in some sources fit
PMF results are based upon synthetic data in which the truevell and others not? Further investigation is needed and the
factor contributions and profiles are known. The results ofauthors are hopeful that practitioners will use methods, such
using the presented method indicate that PMF is able to fies the one presented here, to further assess their pollution
some synthetic pollution sources’ contributions reasonablysource apportionment results.
well, while other synthetic sources have approximations that

Atmos. Chem. Phys., 9, 49343 2009 www.atmos-chem-phys.net/9/497/2009/
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4.3 Eight versus nine factor solutions . Day 146, Factor 6 (Paved Road Dust) M3

In simulations using nine factor solutions, the rate at which 0

the neural network factor matching method failed to uniquely
match bootstrapped factors to base case factors was general
close to 25%. Typically this was just one bootstrap factor & 1
matching with two base case factors for a given bootstrap so- , i
lution, with the remaining bootstrap factors having a unique 0346 044 062 078 05T L0BS 1233 1381 138 L6718
match. Specifying only eight factors allowed PMF to col- Facter Corlbaon, Bl

IapS(_-:' two correlated faCtorS. N me&.u cooking and natural gas Fig. 4. Histogram of results associated with PMF solutions for fac-
leading to ge_neral!y more distinguishable resqlts, thus UnIQU&,; 6's contribution on day 146. This example represents a “vertical
factor matching failed at only a 5% rate. The nine factor solu-gjice from the contribution time series in Fig. 3f and can be calcu-
tions are presented in Figs. 2 and 3 to allow easy comparisofted for any factor-day combination.

with the actual factor information. It is important to note that

if using the traditional factor matching method, based on the

maximum linear correlation between the contribution time the simulation presented here, however, the base case solu-
series, the nine factor bootstrap solutions could be difficulttion had associated residuals for eight of the 39 species that
to sort. Consider Fig. 3d and f for the contribution time se- failed some basic test of independence (for example, runs up,
ries plots for factors 4 (diesel fuel combustion) and 6 (paved'uns below the mean, and length of runs). While it may be
road dust), respectively. If linear correlation alone was used?0ssible to fine tune the PMF2 algorithm settings to improve
as the metric for matching, it is easy to imagine how oftenthe results, the residuals bootstrap rests upon the assump-
factor 4 might be labeled 6 sometimes and vice versa. Thdion that the model from which the residuals come is “true”.
time series plots would accordingly show larger interquartile The authors believe that this is inappropriate given the level
ranges, which would be purely an artifact of the factor match-0f model uncertainty present. In contrast, the nonparamet-
ing technique “lumping apples with oranges”, misleading thefi¢c bootstrap employed here gives focus to thezBMata
practitioner into inferring that PMF’s fit was more uncertain itself, avoiding assumptions about the validity of the model
than it in fact was. In contrast, the neural network methodfit to that data. The surrounding method for assessing that
uses pattern recognition to classify factor profiles that maymodel's quality is equally applicable to PMF results as it is
differ in some species between datasets, differences that md§ another source apportionment model, and is applicable to
be enough to throw off measures like linear correlation, putdssessing estimates of source profiles as well as estimates of
not an expert observer. source contributions.

requency

0.154
=3} 3|

Relative

0.10

4.4 The nonparametric versus parametric bootstrap 4.5 Method improvements

The method used here makes use of a nonparametric boot-he method presented here can likely be made even more ro-
strap for creating replicate datasets. The term “nonparametbust, and the authors propose two options to explore. The
ric” refers to the fact that the bootstrap resamples the data itfirst is to consider the neural networks, with respect to how
self, as opposed to data from a generating process for whickhey are trained and their structure. The networks could train
parameters would have to be set. The parametric approachn more information than just the scaled factor profiles. For
assumes some data generating process is an accurate appréxample, additional input-layer nodes could encode infor-
imation for the data actually in hand. In the present setting,mation about factor contributions or important tracer/marker
however, there are often dozens of chemical species conspecies. Additionally, different network architectures could
prising PMy 5 data, each likely characterized by a different be explored, for example, adding hidden layers, hidden layer
probability density function and cross correlation with other nodes, changing the node activation functions, or the initial-
species. Accordingly, the parametric bootstrap does not apization of weights.

pear to be a feasible tool. Another version of a paramet- The second option pertains to assessing replicate datasets
ric bootstrap resamples residuals from a model fit. In thebefore fitting the PMF model, and fundamentally, this might
present context this approach could be outlined as: Giverninclude examining the choice of the bootstrap method it-
a data matrixX, use PMF to find a factorization; bootstrap self. In the present discussion replicate datasets generated by
rows from the resulting residuals matrik, and add them bootstrapping were not examined in any way for being “real-
to rows of X to create a new data matriX*; use PMF to istic” prior to the PMF model fit. Heidam (1987) presented
find a factorization foiX*; repeat the previous steps as de- a bootstrap method in which the replicate datasets were first
sired. A fundamental assumption of this approach is that thescreened by looking at their associated covariance matrices.
model is the true model, and, given this assumption, residif a given covariance matrix was not representative of the co-
uals should be independent and identically distributed. Fowariance structure assumed to be truly in the data, then that

www.atmos-chem-phys.net/9/497/2009/ Atmos. Chem. Phys., 954372009
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bootstrapped dataset was not fit by the source apportionment T., and Snow, R.: Light-duty motor vehicle exhaust particulate
model. There are numerous accept-reject criteria that could matter measurement in the Denver, Colorado, area, J. Air Waste
be employed such that non-representative replicate datasets Manage., 49, 164-174, 1999.

would not be fit by PMF. For example, if certain marker Carlstein, E.: The ulse.ofsubseriesyaluesforestimating the variance
species or “rare event” sampling days were deemed critical of a general statistic from a stationary sequence, Ann. Stat., 14,
to the model fit, replicate datasets could be tested for suffi- 11711179, 1986.

cient representation of those data before use in subse ue%thatﬁeld’ C.: Model uncertainty, data mining and statistical infer-
P qUeNt ¢ nce, 3. Roy. Stat. Soc. A Sta., 158, 419-466, 1995.

a_nalyses. This approach was avoided in the present Qiscu%hen’ L. W. A., Watson, J. G., Chow, J. C., and Magliano, K. L.:
sion in order to focus on the method’s performance with as  qyantifying PM 5 source contributions for the San Joaquin val-
few practitioner-defined assumptions as possible. In certain |ey with multivariate receptor models, Environ. Sci. Technol., 41,
settings, however, such assumptions may be warranted. 2818-2826, 2007.

With respect to the underlying choice of bootstrap method,Chinkin, L. R., Coe, D. L., Funk, T. H., Hafner, H. R., Roberts, P. T.,
the effect of block length choice for speciated PM data Ryan, P. A., and Lawson, D. R.: Weekday versus weekend activ-
should be explored. It is known that tis¢ationary block ity patterns for ozone precursor emissions in California’s south
bootstrap(SBB) of Politis and Romano (1994), which uses _ coastair basin, J. Air Waste Manage., 53, 829-843, 2003.
random block lengths, is less sensitive to block size mis-Christensen, W. F. and Sain, S. R.: Accounting for dependence in
specification when compared to the CBB employed in the g;l;elet())lgzmultlvanate receptor model, Technometrics, 44, 328—
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