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Abstract. A Positive Matrix Factorization receptor model
for aerosol pollution source apportionment was fit to a syn-
thetic dataset simulating one year of daily measurements of
ambient PM2.5 concentrations, comprised of 39 chemical
species from nine pollutant sources. A novel method was
developed to estimate model fit uncertainty and bias at the
daily time scale, as related to factor contributions. A circular
block bootstrap is used to create replicate datasets, with the
same receptor model then fit to the data. Neural networks are
trained to classify factors based upon chemical profiles, as
opposed to correlating contribution time series, and this clas-
sification is used to align factor orderings across the model
results associated with the replicate datasets. Factor contri-
bution uncertainty is assessed from the distribution of results
associated with each factor. Comparing modeled factors with
input factors used to create the synthetic data assesses bias.
The results indicate that variability in factor contribution es-
timates does not necessarily encompass model error: contri-
bution estimates can have small associated variability across
results yet also be very biased. These findings are likely de-
pendent on characteristics of the data.

1 Introduction

Air pollution comprised of particulate matter smaller than
2.5µm in aerodynamic diameter (PM2.5) has been associated
with a significant increased risk of morbidity and mortality
(Dockery et al., 1993; Pope et al., 2002; Peel et al., 2005).
Existing regulations have focused on average and peak PM2.5
concentrations (µg m−3). To help policy makers design more
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targeted and cost-effective approaches to protecting public
health and welfare, an understanding of the association be-
tween PM2.5 sources and morbidity and/or mortality needs
to be developed.

The Denver Aerosol Sources & Health study (DASH) has
been undertaken to understand the sources of PM2.5 that are
detrimental to human health. PM2.5 filter samples are col-
lected daily from a centrally located site in Denver, CO. Spe-
ciated PM2.5 is quantified including sulfate, nitrate, bulk el-
emental and organic carbon, trace metals, and trace organic
compounds. These speciated PM2.5 data are used as input to
a receptor model, Positive Matrix Factorization (PMF), for
pollution source apportionment. The PMF model fit yields
characterizations of pollution sources, known asfactors, with
respect to their contributions to total measured PM2.5, as well
as their chemical profiles. Ultimately, an association will
be explored between the individual factor contributions and
short-term, adverse health effects, including daily mortality,
daily hospitalizations for cardiovascular and respiratory con-
ditions, and measures of poor asthma. For example, histori-
cal records of daily hospitalizations due to respiratory prob-
lems might be regressed against the daily concentrations of
PM2.5 pollution from diesel fuel combustion (as estimated
by PMF) over the same time span. Having measures of un-
certainty associated with the contribution of diesel fuel com-
bustion to PM2.5, at the daily time scale, may lead to more
reliable characterization of the role diesel fuel combustion
has in daily health effects data.

PMF is a factor analytic method developed by Paatero and
Tapper in 1994 (Paatero and Tapper, 1994) that has been
widely used for pollution source apportionment modeling
(Anderson et al., 2001; Kim and Hopke, 2007; Larsen and
Baker, 2003; Lee et al., 1999; Polissar et al., 1998; Ramadan
et al., 2000). The objective of this paper is to present a novel
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method that has been developed to quantify uncertainty and
bias in a PMF source apportionment model as it is applied to
speciated PM2.5 data. Uncertainty in a PMF solution exists
at a number of levels and is important to quantify, especially
if the solutions will inform environmental and health policy
decisions.

Uncertainty can stem from the data and from the PMF
model itself. With respect to the data, uncertainty in the so-
lution is imparted through measurement error as well as ran-
dom sampling error. For the PMF model, there is generally
“rotational ambiguity” in the solutions (i.e. solutions are not
unique); further, solutions based upon the same data can vary
depending upon how the model parameters are set. Past stud-
ies have considered these aspects, primarily by using the sta-
tistical method of the bootstrap to analyze model fit results.
For example, Heidam (1987) considered the uncertainty in
factor profiles due to receptor model uncertainty by varying
the model parameters in models fit to bootstrapped datasets.

The Environmental Protection Agency’s Office of Re-
search and Development distributes two software products,
EPA PMF 1.1 (Eberly, 2005) and EPA Unmix 6.0 (Norris
et al., 2007), which incorporate the bootstrap to analyze re-
ceptor model fit results. The software can be used to assess
uncertainty in factor profile estimates and has been used by
studies such as Chen et al. (2007) and Olson et al. (2007) to
characterize sources of PM2.5. Few studies, however, have
addressed uncertainty in factor contribution estimates. Two
examples are Nitta et al. (1994) and Lewis et al. (2003),
though the estimates come from different source apportion-
ment models and pertain to average contribution variability.

The method presented in this paper estimates, at the mea-
surement time scale, bias and variability due to random
sampling error in factor contribution estimates. Replicate
datasets are created using a circular block bootstrap, and
the subsequent application of two novel techniques make
such estimation possible. First, neural networks are used for
matching factors across PMF results on that data. Second
the measurements resampled across the replicate datasets are
tracked within the PMF solutions. This discussion describes
the method in the context of application to a synthetic PM2.5
dataset, which was designed to simulate DASH data, fit by
the PMF model. Using synthetic data allows assessment of
model fit as well as a way to validate the method itself.

2 Methodology

Presented here is a method of assessing uncertainty in source
apportionment model results using two different measures:
bias and variability due to random sampling error. The
method goes beyond computing these measures in terms of
“average values” and gives estimates at the measurement
time scale.

A synthetic time series of daily PM2.5 measurements is
used in which the concentrations of chemical species are de-

rived from published source profiles and source contributions
consistent with the Denver area. The solution from applying
PMF can be compared with “known” profiles and contribu-
tions, allowing estimates of bias to be computed.

A circular block bootstrap generates additional data by re-
sampling, with replacement, from the original synthetic mea-
surement series. Each new dataset, or replicate, is again fit
by the PMF model to apportion the PM2.5 mass to factors.

The first novel aspect pertains to how factors are sorted
between solutions. For each solution the factors should cor-
respond to the same real-world pollution sources. The fac-
tors need to be aligned such that “factork” in each solution
always refers to the same factor. To accomplish this factor
alignment, or matching, the standard approach has been to
use scalar metrics like linear correlation to match a factor
from one solution to the “closest” factor in another solution.
This is the approach taken by the EPA PMF 1.1 software,
where it is specifically the time series of factor contributions
that are matched between solutions. In contrast, the present
work takes the novel approach of using Multilayer Feed
Forward Neural Networks (NN), trained to perform pattern
recognition, to align factors between PMF solutions. Further,
using the intuitive notion that pollution sources are character-
ized best by the chemical species they emit, the matching is
based on factors’ profiles rather than their contribution time
series. The NN approach is a robust factor matching tech-
nique: it avoids the sensitivity to outliers that is problematic
when using measures such as linear correlation and replaces
it with a method that is capable of capturing linear as well as
non-linear relationships.

The second novel aspect in the method presented here
is the tracking of the measurement days resampled in each
bootstrapped dataset. Through this bookkeeping it is possi-
ble to arrive at a collection of PMF results for each factor’s
contribution on each day. Accordingly, descriptive statistics
can be computed for each factor contribution on each day.

2.1 Positive Matrix Factorization

PM2.5 pollution is typically comprised of dozens of chemical
specie emitted from multiple sources. The concentration of
each species may be treated as a random variable observed
over time. The statistical technique offactor analysiscan be
used to explain the variability in these observations as linear
combinations of some unknown subset of the sources, called
factors. In traditional factor analysis approaches, including
Principal Components Analysis, the variance-covariance ma-
trix of the observations is used in an eigen-analysis to find the
factors that explain most of the variability observed. The un-
certainty in the observations, for all variables, is assumed to
be independent and normally distributed. These assumptions
are often not valid in the context of air pollution measure-
ment data. In contrast, PMF – a receptor-based source appor-
tionment model – offers an alternative technique that is based
upon a least squares method, and measurement uncertainties
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can be specific to each observation, correlated, and non-
normal in distribution. Further, the factors resultant from
PMF need not be orthogonal, which is an important quality
when trying to associate modeled factors to real-world pollu-
tion sources that can be highly temporally correlated but are
nonetheless important to characterize separately (e.g. diesel
versus gasoline fuel combustion).

Given a matrix of observed PM2.5 concentrations,X, PMF
attempts to solve

X = GF + E (1)

by finding the matricesG andF that recoverX most closely,
with all elements ofG andF strictly non-negative.G is the
matrix of factor contributions (or “scores” in traditional fac-
tor analysis terminology), whereGik is the concentration fac-
tor k contributed to the total PM2.5 observed in samplei. F
is the matrix of factor profiles (or “loadings”), whereFkj is
the fraction at which speciesj makes up factork. Finally, E
is the matrix of residuals defined by

Eij = Xij −

p∑
k=1

GikFkj (2)

G andF are found through an alternating least squares al-
gorithm that minimizes the sum of the normalized, squared
residuals,Q

Q =

n∑
i=1

m∑
j=1

(
Eij

Sij

)2

(3)

whereEij is weighted bySij , the uncertainty associated with
the measurement of thej th pollutant species in thei sample.
The ability to weight specific observations with specific un-
certainties allows PMF to handle data that include heteroge-
nous measurement uncertainty, outliers, values below mea-
surement detection limits, and missing values. As such, PMF
can often yield better results than traditional factor analysis
methods (Huang et al., 1999).

An algorithm for implementing PMF is available as a com-
mercial software library, PMF2 (Paatero, 1997). The work
presented here uses PMF2 version 4.2, and specifically, the
pmf2wopt executable file (Paatero, 2007). PMF2 has numer-
ous optimization parameters that can be set by the user, and
methods of choosing these values have been published else-
where (Paatero, 2000; Paatero et al., 2002, 2005). Since the
focus of this paper is on a method of assessing uncertainty
and bias in PMF solutions, the discussion of fine-tuning the
numerous algorithm parameters is kept to a minimum. Two
PMF2 parameters are especially important to the PMF model
fit and deserve mention. First, the number of factors in the
model,p, must be set by the user. In the present work, eight
and nine factor solutions are considered, with the primary
focus on the results for the nine factor solutions. The other
important parameter is FPEAK, which controls the rotational
freedom of the possible solutions. It is advised that FPEAK

values range between−1 and 1, with positive values causing
extremes in theF matrix (values near 0 or 1) and negative val-
ues causing extremes in theG matrix. In the present work,
FPEAK is zero for all PMF2 solutions, which corresponds to
the default setting.

2.2 Synthetic data

Given that the results of pollution source apportionment
models may ultimately be used as critical components of en-
vironmental policy and regulatory decisions, it is especially
important to assess their quality. One approach for evaluating
receptor models is the use of synthetic data, which is defined
as simulated PM2.5 measurements rather than actual obser-
vations (Willis, 2000). Predefined sources are used, along
with their respective contributions and profiles, to create the
G andF matrices in Eq. (2). WithG andF definedX can be
calculated directly and given as input (along with uncertainty
estimates) to the PMF2 software, where the resultantG and
F matrices can then be compared with the actual values to
assess model fit.

The method of creating synthetic datasets followed in this
paper is described in detail in Brinkman et al. (2006) and
Vedal et al. (2007). Briefly, nine pollutant sources were used
(Table 1), which contributed concentrations of 39 chemical
species (Table 3), over 365 synthetic sampling days. The
synthetic measurements were assumed to come from a single
receptor site. Table 1 also lists the references used to generate
the annual contributions, chemical profile, temporal patterns
and variability for each source. Table 2 shows the lag zero
cross correlations between the source contributions. With re-
spect to PMF modeling, the relatively high cross-correlations
between some of the input source contribution time series has
the implication that some of these sources may be harder to
cleanly separate from others.

Distinct time series for the contributions from each source
were generated by starting with average contribution es-
timates from preliminary DASH studies and the Northern
Front Range Air Quality Study (Watson et al., 1998), then
adding day-to-day variations reflecting both random variabil-
ity and hypothesized weekly or seasonal patterns, as appro-
priate. Daily totals for the nine source contributions were
normalized to match actual daily PM2.5 levels observed in
Denver in 2003. It should be noted that the presence of ad-
ditional sources, such as secondary organic aerosols, could
complicate application of PMF to observed data. The ma-
trix of data uncertainties,S from Eq. (3), is computed as
follows. Measurement detection limits, detection limit un-
certainty, and measurement uncertainty associated with typ-
ical analytical techniques used to speciate PM2.5 filter sam-
ples (Ion Chromatography, Thermal Optical Transmission,
and Gas Chromatography/Mass Spectrometry), were incor-
porated into the PMF input via

Sij =

√(
αjXij

)2
+

(
βjDj

)2 (4)
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Table 1. Synthetic PM2.5 sources.

Source References

Secondary Ammonium Sulfate Lough (2004)
Secondary Ammonium Nitrate Lough (2004)
Gasoline Vehicles Watson et al. (1998); Chinkin et al. (2003);

Cadle et al. (1999); Hildeman et al. (1991); Rogge et al. (1993a)
Diesel Vehicles Watson et al. (1998); Chinkin et al. (2003);

Hildeman et al. (1991); Rogge et al. (1993a); Schauer (1998)
Paved Road Dust Watson et al. (1998); Chinkin et al. (2003); Hildeman et al. (1991);

Rogge et al. (1993b)
Wood Combustion Watson et al. (1998); Fine et al. (2004)
Meat Cooking Watson et al. (1998); Schauer et al. (1999)
Natural Gas Combustion Hildeman et al. (1991); Hannigan (1997); Rogge et al. (1993d)
Vegetative Detritus Hildeman et al. (1991); Hannigan (1997); Rogge et al. (1993c)

Table 2. Source contribution cross-correlations, Lag=0.

Amm Sulfate Amm Nitrate Gasoline Diesel Road Dust Wood Meat Natural Gas Veg

Ammonium Sulfate 1 0.55 0.89 0.57 0.73 0.24 0.81 0.68 0.49
Ammonium Nitrate . 1 0.39 0.26 0.32 0.82 0.35 0.8−0.15
Gasoline Vehicles . . 1 0.62 0.74 0.13 0.81 0.64 0.54
Diesel Vehicles . . . 1 0.61 0.08 0.28 0.33 0.31
Paved Road Dust . . . . 1 0.13 0.57 0.5 0.37
Wood Combustion . . . . . 1 0.14 0.77−0.34
Meat Cooking . . . . . . 1 0.64 0.53
Natural Gas . . . . . . . 1 0.08
Vegetative Detritus . . . . . . . . 1

where for speciesj , αj is the measurement uncertainty,βj is
the detection limit uncertainty, andDj is the detection limit.
Table 3 contains theα, β andD associated with each species.
The Sij uncertainties were incorporated into the final data
matrixX′ with the following formula

X
′

ij = Xij + SijZij (5)

whereZij is a random number drawn from a standard normal
distribution. If X′

ij was less than the detection limit associ-
ated with measuring speciesj , then a value of one-half the
detection limit was substituted in the final data matrix.

2.3 The bootstrap

The bootstrap is a computationally intensive method for es-
timating the distribution of a statistic, the statistic itself be-
ing an estimator of some parameter of interest (Efron, 1979).
The essence of the method is to create replicate data by re-
sampling, with replacement, from the original observations
of a random variable. For each replicate dataset the statistic
of interest is computed, and the distribution of these values
serves as an estimate for the random sampling distribution

of the statistic. The properties of this distribution are then
used to make inferences about the parameter of interest. In
the present context, each pollutant species’ time series repre-
sents realizations of a random variable. TheF andG matri-
ces resulting from PMF’s fitting of these data are functions
of these random variables, thus, each element of those ma-
trices may be considered a statistic. Previous studies using
PMF have focused on analyzing theF matrix, the matrix of
factor profiles. This discussion takes a different tack, with
the statistic of interest being each element of theG matrix,
the matrix of factor contributions over time.

2.3.1 Dependent data considerations

Much of bootstrap theory is based upon the assumption that
the data are comprised of observations of independent and
identically distributed (iid) random variables. Time series
data, however, are typically serially correlated. Singh (1981)
showed that the bootstrap can be inconsistent in estimat-
ing the distribution of statistics based upon dependent data.
Since then, numerous modifications of the original iid boot-
strap have been formulated to better handle dependent data
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Table 3. Synthetic PM2.5 species, measurement detection limits
(D), measurement errors (α), and detection limit uncertainties (β).

Species # Species Name D α β

(ng/m3) (%) (%)
1 Elemental Carbon 13 10 197
2 Organic carbon 3.6 14 100
3 Nitrate 0.094 5 296
4 Sulfate 0.20 3 614
5 Ammonium 0.22 6 1057
6 n-Tricosane 0.97 8 125
7 n-Tetracosane 1.4 9 186
8 n-Pentacosane 1.1 8 209
9 n-Hexacosane 1.1 7 214
10 n-Heptacosane 1.1 6 245
11 n-Octacosane 1.2 4 207
12 n-Nonacosane 0.96 4 234
13 n-Triacontane 0.92 6 185
14 n-Hentriacontane 0.92 8 145
15 n-Dotriacontane 0.23 9 108
16 n-Tritriacontane 0.16 9 96
17 n-Tetratriacontane 0.093 8 93
18 Oleic acid 6.6 14 39
19 n-Pentadecanoic acid 1.4 15 235
20 n-Hexadecanoic acid 48 16 116
21 n-Octadecanoic acid 26 14 137
22 Acetovanillone 0.064 14 212
23 Coniferyl aldehyde 1.9 14 86
24 Syringaldehyde 0.62 12 139
25 Acetosyringone 0.97 11 468
26 Retene 0.079 12 316
27 Alkyl Cyclohexanes 0.085 8 123
28 Benzo[k]fluoranthene 0.0068 10 649
29 Benzo[b]fluoranthene 0.0068 10 649
30 Benzo[e]pyrene 0.0056 15 272
31 Indeno[1,2,3-cd]pyrene 0.017 13 1052
32 Indeno[1,2,3-cd]fluoranthene 0.021 13 1052
33 Benzo[ghi]perylene 0.023 10 169
34 Coronene 0.021 13 23
35 Cholestanes 0.21 8 65
36 Hopane 0.045 17 202
37 Norhopane 0.050 19 113
38 Homohopanes 0.013 18 342
39 Oxygen 41 3 106

(Carlstein, 1986; Kunsch, 1989; Liu and Singh, 1992). One
approach often used for time series data is to resample blocks
of successive observations. If the blocks are of sufficient
length, l, and the series is only weakly dependent, then the
observations within each block may be considered indepen-
dent of the observations within the other blocks. Further, if
the series is stationary then all blocks will share the samel-
dimensional joint distribution. These two conditions allow
the blocks themselves to be treated as independent and iden-
tically distributed observations to which the iid bootstrap can
be applied. This approach is currently used by the EPA PMF
1.1 software tool, which uses a 3-day, Moving Block Boot-
strap (MBB).

Fig. 1. Distribution of the lag dependence parameter,p, for the 39
pollutant species.

In the EPA’s bootstrap implementation, as well as this
study, measurement days are resampled. In the present case,
realizations of a composite random variable comprised of
39 pollutant species are resampled, with replacement, from
the original synthetic data. To investigate an appropriate
bootstrap block size the serial correlation of each pollutant
species in the synthetic dataset, as well as total PM2.5 mass,
was examined. An Auto Regressive (AR) time series model
was fit to each species’ series and the optimal lag parameter,
p, was found, withp constrained between 1 and 14. Figure 1
shows the distribution of these lag values.

While concentrations for most species were serially corre-
lated with only the previous two day’s concentrations, some
species had longer lag-dependence. The aggregate mass of
all species had lag-three dependence. It has been shown that
the consistency of approximations yielded by the block boot-
strap is sensitive to block size, with optimal block size criti-
cally dependent upon the size of the data as well as the statis-
tic for which the distribution is being estimated (Hall et al.,
1995; Lahiri, 2001). Given these findings, and that practi-
cal methods for choosing block size are based on examining
the lag-dependence in the data (Politis and White, 2004), it
seems difficult to choose a single block size for resampling
measurement days of speciated PM data.

An additional complication in using the block bootstrap
with such data is that while all block bootstrap schemes are
designed to handle serial correlation they also assume the
data are from a stationary stochastic process. To the authors’
knowledge, there are no published results in which a block
bootstrap was used on speciated PM time series data that had
tested for, or transformed to, stationarity prior to resampling.
This assumption is ignored in the present work, but it de-
serves consideration in future applications of the block boot-
strap.

The present work uses 1000 replicate datasets, each gener-
ated by the circular block bootstrap (CBB) of Politis and Ro-
mano (1992) with a block size,b, of four. Circular refers to
“wrapping” the data end-to-beginning such that for a length
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N series,XN+k=Xk. A block length of four was chosen
since the lag-dependence for mass was three days, and the
majority of species had lag-dependence of five or less days.
As an example, to create a bootstrap replicate data matrixX∗,
let Y be a copy of the original matrixX, and append the first
b-1 rows ofX to the bottom ofY. Divide the rows ofY into
N consecutive sizeb blocks. IfXi andYi denote theith row
of X andY, respectively, then the blocks would be

block 1 : Y1, Y2, Y3, Y4=X1, X2, X3, X4
block 2 : Y2, Y3, Y4, Y5=X2, X3, X4, X5
...

block N : YN , YN+1, YN+2, YN+3=XN , X1, X2, X3

ConstructX∗ by selectingN/b blocks randomly, with re-
placement, fromY. Construct an associated replicate matrix
of uncertainties,S∗, by selecting these same blocks fromS.
Note that ifN/b is not an integer, round up and truncate as
needed. For example, in the present case withN=365 and
b=4, 92 blocks would be chosen to createX∗. The last three
elements of the 92nd block would not be used, yielding a to-
tal of 365 rows (measurement days) resampled fromX. Im-
portantly, under CBB resampling each row ofX has the same
probability of being resampled, which is not the case under
MBB resampling (Lahiri, 2003).

2.3.2 Record keeping

In the following results an important component in imple-
menting the bootstrap is the tracking of days resampled in
each replicate dataset. Since the essence of bootstrapping is
resampling with replacement it is possible that for any given
replicate dataset some synthetic measurement days are in-
cluded multiple times and other days are not included at all.
By keeping track of which days are resampled in which repli-
cate dataset it is possible to assess factor contribution uncer-
tainty and bias at the daily time scale.

2.4 Factor matching

The use of the bootstrap yields a collection of factor contri-
bution matrices,Gk, k=1,. . . ,B, whereB is the number of
bootstrap replicate datasets. The collection of matrices may
be considered as a single, three-dimensional matrixG′, with
elementsG

′k
ij , i=0,. . . ,N-1; j=0,. . . ,P-1; k=0,. . . ,B,whereN

is the number of samples andP is the number of factors (note
that theG matrix associated with the original data and “base
case” solution is also included inG′). While the nature of the
factors that the PMF2 algorithm finds should be stable across
the “bootstrap” solutions, the ordering of the factors within
those solutions may be different. Before computing statistics
on the elements ofG′, the dimension indexed byj must be
sorted, such that across theB+1 matrices factorj is always
associated with the same real-world pollution source. The
typical approach to matching and sorting factors has relied
on comparisons between the factor contribution time series,

using linear correlation to match a given factor from a boot-
strap solution (or a factor from another analysis method) to
the “closest” factor in a base case solution.

There are several concerns with this approach. First,
“closeness” is measured with a scalar metric that is highly
sensitive to outliers. Second, the bootstrap replicate data sets
will not preserve the temporal patterns seen in the original
data when viewed over the course of the entire sampling pe-
riod (although there are block bootstrap methods that seek
to address this). Correlation ceases to be a useful measure
once there is no temporal consistency between the contribu-
tion time series being compared. Third, there are no clear
rules for what constitutes sufficient correlation, especially in
cases where two factors in one bootstrap solution are highly
(or even poorly but equally) correlated with the same factor
in the base case solution. The use of this metric invites “data
dredging”, where the practitioner must make ad hoc choices
to separate and match factors.

The present discussion employs an approach that the au-
thors believe to be novel and robust when applied to aerosol
pollution data: neural networks are used to match factors be-
tween bootstrap solutions and the base case solution based
upon their profiles. Matching on profiles addresses the sec-
ond issue noted above, while the use of neural networks
rather than correlation address the first and third issues. The
need to classify a measured spectrum (profile) with a known
reference spectrum is a problem found in multiple scientific
settings, most notably in the analysis of stellar spectra and
data from hyperspectral remote sensing. Findings in these
fields may be useful in the modeling of aerosol pollution data
and are considered briefly. Work by van der Meer (2006)
found that a spectral similarity measure based on correla-
tion was more sensitive to noisy data than other traditional
measures based on Euclidean distance or spectral angle. Fur-
ther, Shafri et al. (2007) reported that neural networks were
accurate at classifying spectra from remote sensing of trop-
ical forests, especially when compared to measures based
on spectral angle. Tong and Cheng (1999) found that us-
ing neural networks was superior to using maximum corre-
lation when classifying gas chromatography mass spectrom-
etry data. Based on these findings, as well as the findings
presented herein, the authors are confident that using neural
networks to match factor profiles allows the bootstrap tech-
nique to be better leveraged. The factor matching process
can be easily automated, adapted to complex patterns and
new, possibly noisy, data, and can avoid subjective “close-
ness” thresholds required when using less robust measures
like correlation.
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2.5 Neural networks

Artificial Neural Networks are statistical modeling methods
capable of characterizing highly non-linear functions, doing
so by approximating the behavior of the brain. The term “ar-
tificial” is used to distinguish this numerical approximation
of biological, adaptive, cognition from those biological sys-
tems. In general, this is understood in statistical modeling,
and Artificial Neural Networks are simply referred to as Neu-
ral Networks (NN). Excellent introductions to the subject can
be found in Haykin (1998) and Munakata (1998).

The specific type of NN used in this study is called aMulti-
layer Feed Forward Network. This type of network relies on
supervised learning, in which the network is given inputs and
learns how to transform it into desired outputs. The learn-
ing is encoded in numerical weights defining the strength
of connection between elements in the network. Weights
are found through quasi-Newton optimization incorporated
with the backpropagation method, where “backpropagation”
refers to the ground-breaking algorithm developed in the
1970s and 1980s (Rumelhart et al., 1986; Werbos, 1974),
allowing neural networks to classify linearly inseparable pat-
terns. A trained network, characterized by its structure and
its weights, can then be given novel input and transform it to
the correct output. In the present work that transformation is
classification: given a new factor profile, the trained neural
networks will classify it as a known type, or possibly classify
it as unknown.

2.5.1 Neural network configuration

In the present work, NN software from Visual Numerics’
IMSL® C Numerical Library, version 6.0, is used. The struc-
ture of the network is three fully connected layers, with 39
nodes in the input layer, five nodes in the hidden layer, and
two nodes in the output layer. All nodes in the hidden and
output layers use a logistic activation function. The values
of the two output nodes range between 0 and 1. An output
of [1,0] indicates a perfect match between an input factor
profile and the profile that particular network was trained to
classify as a “Yes”. Likewise, an output of [0,1] indicates
a perfect non-match between an input factor profile and the
learned profile. A “Yes” match is only possible if the first
output node has a value of at least 0.95, with the second node
having a value no larger than 0.05.

The performance of the network depends heavily upon the
data used for training. It is well established that neural net-
works can be unstable when data used for training varies
greatly in scale; therefore, transformation and normalization
of data are typical preprocessing steps. In this study, factor
profiles are normalized before being learned by the networks.
In “raw” form, the rows of theF matrix correspond to factor
profiles and each row sums to 1. Viewing factor profiles this
way can sometimes result in factors that are difficult to dis-
tinguish, since some species will be present in large amounts

in many factors (e.g. organic carbon and oxygen). To make
plots of factor profiles more visibly distinguishable the fol-
lowing normalization is done,

F
′

kj =
Fkj

P∑
k=1

Fkj

(6)

whereF ′

kj is the relative weighting speciesj has in factor
k’s profile when considering all other factors. When viewing
factor profiles under this normalization, species common to
many factors are damped and marker species become more
pronounced, as compared to viewing the raw profiles.

2.5.2 Training data

Five datasets were used to train the neural networks. One
dataset was the original synthetic data, with the remaining
four being bootstrap replicates. PMF was fit to each dataset,
with the solution associated with the original dataset being
the base case. The base case factor profiles were normal-
ized (as described in Sect. 2.5.1), plotted, and visually com-
pared to the normalized factor profile plots associated with
the bootstrap solutions. For each bootstrap solution the fac-
tors were reordered to match the base case ordering. Figure 2
shows the end result of this process, with the five factor pro-
file plots used to classify each factor for the neural network
training, as well as the actual profile used to create the origi-
nal synthetic dataset.

2.6 Method steps

Having discussed the major components of the method for
analyzing factor contribution uncertainty and bias, it is help-
ful to summarize their relationship in the following steps:

Step 1:Using the synthetic PM2.5 data and measurement
uncertainties, compute a base case PMF model fit that hasP

factors. In the present work,P=9.
Step 2: CreateT bootstrap replicate data matrices, with

corresponding uncertainty matrices, and fit each set with
PMF. These results, in addition to the base case result, will
serve as the neural network training data. In the present work,
T =4.

Step 3:For each training replicate dataset, visually com-
pare the normalized bootstrap factor profiles versus the nor-
malized base case profiles, and define the factor matching
between the results. Reorder the factors to be consistent with
the base case factor ordering.

Step 4:For each factor, train a neural network to learn its
normalized profile, as well as what is not its profile (thus,
there will beP networks). For each factor there will beT +1
profiles to be learned as “Yes” patterns. The remainingP -1
profiles associated with the base case results are learned as
“No” patterns.

www.atmos-chem-phys.net/9/497/2009/ Atmos. Chem. Phys., 9, 497–513, 2009



504 J. G. Hemann et al.: A new method to estimate PMF model uncertainty

Fig. 2. Plots of five normalized profiles for each factor learned by the neural networks. The thicker, black line represents the profile associated
with the “base case” solution, while the thicker red line indicates the actual profile used to create the synthetic data. The remaining four
colors correspond to factor profiles for “bootstrap” solutions based on resampled data. The factor ordering is now relative to the ordering in
the base case solution.
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Fig. 2. Continued.
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Fig. 2. Continued.
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Step 5:CreateB new bootstrap replicate datasets and fit
each one with PMF. These results will be used to assess PMF
model fit uncertainty. In the present work,B=1000

Step 6:For each bootstrap solution, allow each of theP

neural networks to examine each of theP normalized factor
profiles. Each network should identify a unique factor profile
as a “Yes”, with all others classifying the profile as “No”.
Reorder the factors in the bootstrap solution accordingly.

Step 7: Parse the factor contribution data by day-factor
combination. For example, consider examining the bias and
variability in the PMF solutions for the 3rd factor on day 126.
All B+1 datasets would be searched for where the original
day 126 was resampled. This collection of indices would
be used to index into the 3rd column of the corresponding
solutions’G matrix to get factor 3’s contribution on day 126.
The distribution of values is then compared with the actual
contribution used to create the original synthetic dataset.

Note that Step 3 is what establishes the supervisor for the
supervised learningalgorithm used to train the neural net-
work. The role of the neural network is to learn the classifi-
cation defined by an expert human observer, such that when
new factor profiles are analyzed, they are classified as would
the expert. In Step 6, it is possible that a bootstrap factor
can be matched with more than one base case factor, or, per-
haps, it cannot be matched to any base case factor. In either
case, that particular solution is excluded from the collection
of other solutions. In this way, after the last replicate dataset
has been fit by PMF, the collection of solutions correspond
to the case where bootstrap factors were matched uniquely to
base case factors.

3 Results

Eight and nine factor PMF models fit to the original synthetic
data were comparable, in terms of sums of the normalized,
squared residuals,Q, the residuals associated with specific
species, and the physical interpretability of the factors. Seven
and ten factor solutions were judged less optimal with respect
to these same measures. Accordingly, descriptive statistics
are presented for both eight and nine factor simulations in
Table 4. (Thekurtosisstatistic relates to the peakedness of
the distribution; a value near 0 is associated withmesokurtic
distributions, of which the Normal (µ,σ 2) distribution is the
most common example.) To facilitate comparison of model
fitting results with the contributions of the nine sources used
to create the synthetic data, all other results pertain to the
simulation using a nine factor solution. Figure 3 presents
plots of factor contribution time series for all nine factors.
Each plot shows the base case series, the actual series, and
two bands defined by empirical quantiles of the simulation
results: the interquartile range and the 5th–95th percentile
range. The plots show the data and quantiles smoothed by a
5-day boxcar average, in the hopes of focusing attention on
the gross features of the series and not the daily fluctuations

Table 4. Simulation statistics for 8 and 9 factor solutions.

8 Factors 9 Factors

Number of bootstrap replicate datasets: 1000 1000
Number of datasets for which PMF2
failed to converge to a solution: 2 1
Number of datasets for which factors
could not be uniquely matched: 45 263

Q-value Statistics
Sample Size: 953 736
Mean: 3823.43 3299.16
Standard Deviation: 101.14 73.11
Skewness: 0.10 0.12
Kurtosis: 0.28 0.02

in contribution. Figure 4 is a histogram showing the distri-
bution of contributions associated with a specific factor on a
specific day, as an example of how the method allows assess-
ment of contribution uncertainty at the daily time scale.

4 Discussion

4.1 Factor contribution plots

The results of applying the method to the synthetic PM2.5
data demonstrate several types of PMF solutions. The first is
exemplified by the contribution time series plots for factors
1 and 3 (Fig. 3a and c). Here, PMF’s solutions, over hun-
dreds of resampled datasets, show low variability and mod-
erate bias when compared to the actual contribution time se-
ries. Factors 2, 4, 6, and 8 represent solutions in which the
temporal pattern matches closely with the actual respective
contribution time series, but the bias is large. Finally, fac-
tors 5, 7, and 9 have solutions that match poorly with respect
to bias, variability, and temporal pattern, against the known
contributions. It is worth recalling from Table 2 that these
three factors had moderately strong correlations with each
other in the contribution time series used to create the syn-
thetic data.

The preceding results should not be generalized with re-
spect to how well PMF models real-world pollution sources,
as the results are based on synthetic data. However, if the
synthetic data is assumed to be a close approximation of
data likely to be actually observed, then application of the
method to synthetic data representing a specific situation
could help identify sources for which PMF contribution esti-
mates should be carefully scrutinized.
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Fig. 3. Comparison of PMF bootstrap solutions for factor contributions versus actual factor contributions. Each plot corresponds to a different
factor, showing the actual contribution time series, the time series corresponding to the base case PMF solution, and two bands based on the
empirical quantiles of the bootstrap solutions. The listed coefficient of correlation is with respect to the base case and actual contribution
time series. The factor ordering is relative to the base case solution.

4.2 Uncertainty, variability, and bias

Application of the method to synthetic, daily, measurements
of PM2.5 yields estimates of variability and bias in daily fac-
tor contributions, which can be used in an uncertainty anal-
ysis of the PMF model fit. However, the uncertainty in re-

sults brought out by fitting PMF to resampled data is likely
different compared to the uncertainty in the results due to
model assumptions. For example, how would the solutions
change if seven or eight factors were instead considered; if
certain pollutant species were added or removed; if differ-
ent assumptions were made about measurement errors; if a
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Fig. 3. Continued.

different source apportionment model was used altogether?
As Chatfield (1995) notes,“It is indeed strange that we of-
ten admit model uncertainty by searching for a best model
but then ignore this uncertainty by making inferences and
predictions as if certain that the best fitting model is actu-
ally true.” In the present work, as much as possible, model
assumptions have been avoided: input data was not filtered
after seeing preliminary output, and PMF2 parameters were

set to avoid assumptions about the distribution or “quality”
of the data. Still, the use of PMF as the receptor model, the
chemical species included in the analysis, and the number of
factors to be characterized, were all choices and are clearly
subjective. The present work seeks to offer a method for as-
sessing uncertainty in model fit when it is assumed that the
model is valid, and this distinction should be kept in mind.
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Fig. 3. Continued.

It is clear from the factor contribution plots in Fig. 3 that
the PMF estimates for some factors are badly biased from
the known contributions. Such bias is assessable because the
PMF results are based upon synthetic data in which the true
factor contributions and profiles are known. The results of
using the presented method indicate that PMF is able to fit
some synthetic pollution sources’ contributions reasonably
well, while other synthetic sources have approximations that

have large variability, bias, and generally are in error. Does
PMF perform similarly for observed data, and if so, what
characteristics of the data might result in some sources fit
well and others not? Further investigation is needed and the
authors are hopeful that practitioners will use methods, such
as the one presented here, to further assess their pollution
source apportionment results.

Atmos. Chem. Phys., 9, 497–513, 2009 www.atmos-chem-phys.net/9/497/2009/



J. G. Hemann et al.: A new method to estimate PMF model uncertainty 511

4.3 Eight versus nine factor solutions

In simulations using nine factor solutions, the rate at which
the neural network factor matching method failed to uniquely
match bootstrapped factors to base case factors was generally
close to 25%. Typically this was just one bootstrap factor
matching with two base case factors for a given bootstrap so-
lution, with the remaining bootstrap factors having a unique
match. Specifying only eight factors allowed PMF to col-
lapse two correlated factors – meat cooking and natural gas –
leading to generally more distinguishable results, thus unique
factor matching failed at only a 5% rate. The nine factor solu-
tions are presented in Figs. 2 and 3 to allow easy comparison
with the actual factor information. It is important to note that
if using the traditional factor matching method, based on the
maximum linear correlation between the contribution time
series, the nine factor bootstrap solutions could be difficult
to sort. Consider Fig. 3d and f for the contribution time se-
ries plots for factors 4 (diesel fuel combustion) and 6 (paved
road dust), respectively. If linear correlation alone was used
as the metric for matching, it is easy to imagine how often
factor 4 might be labeled 6 sometimes and vice versa. The
time series plots would accordingly show larger interquartile
ranges, which would be purely an artifact of the factor match-
ing technique “lumping apples with oranges”, misleading the
practitioner into inferring that PMF’s fit was more uncertain
than it in fact was. In contrast, the neural network method
uses pattern recognition to classify factor profiles that may
differ in some species between datasets, differences that may
be enough to throw off measures like linear correlation, but
not an expert observer.

4.4 The nonparametric versus parametric bootstrap

The method used here makes use of a nonparametric boot-
strap for creating replicate datasets. The term “nonparamet-
ric” refers to the fact that the bootstrap resamples the data it-
self, as opposed to data from a generating process for which
parameters would have to be set. The parametric approach
assumes some data generating process is an accurate approx-
imation for the data actually in hand. In the present setting,
however, there are often dozens of chemical species com-
prising PM2.5 data, each likely characterized by a different
probability density function and cross correlation with other
species. Accordingly, the parametric bootstrap does not ap-
pear to be a feasible tool. Another version of a paramet-
ric bootstrap resamples residuals from a model fit. In the
present context this approach could be outlined as: Given
a data matrixX, use PMF to find a factorization; bootstrap
rows from the resulting residuals matrix,E, and add them
to rows ofX to create a new data matrix,X∗; use PMF to
find a factorization forX∗; repeat the previous steps as de-
sired. A fundamental assumption of this approach is that the
model is the true model, and, given this assumption, resid-
uals should be independent and identically distributed. For

Fig. 4. Histogram of results associated with PMF solutions for fac-
tor 6’s contribution on day 146. This example represents a “vertical
slice” from the contribution time series in Fig. 3f and can be calcu-
lated for any factor-day combination.

the simulation presented here, however, the base case solu-
tion had associated residuals for eight of the 39 species that
failed some basic test of independence (for example, runs up,
runs below the mean, and length of runs). While it may be
possible to fine tune the PMF2 algorithm settings to improve
the results, the residuals bootstrap rests upon the assump-
tion that the model from which the residuals come is “true”.
The authors believe that this is inappropriate given the level
of model uncertainty present. In contrast, the nonparamet-
ric bootstrap employed here gives focus to the PM2.5 data
itself, avoiding assumptions about the validity of the model
fit to that data. The surrounding method for assessing that
model’s quality is equally applicable to PMF results as it is
to another source apportionment model, and is applicable to
assessing estimates of source profiles as well as estimates of
source contributions.

4.5 Method improvements

The method presented here can likely be made even more ro-
bust, and the authors propose two options to explore. The
first is to consider the neural networks, with respect to how
they are trained and their structure. The networks could train
on more information than just the scaled factor profiles. For
example, additional input-layer nodes could encode infor-
mation about factor contributions or important tracer/marker
species. Additionally, different network architectures could
be explored, for example, adding hidden layers, hidden layer
nodes, changing the node activation functions, or the initial-
ization of weights.

The second option pertains to assessing replicate datasets
before fitting the PMF model, and fundamentally, this might
include examining the choice of the bootstrap method it-
self. In the present discussion replicate datasets generated by
bootstrapping were not examined in any way for being “real-
istic” prior to the PMF model fit. Heidam (1987) presented
a bootstrap method in which the replicate datasets were first
screened by looking at their associated covariance matrices.
If a given covariance matrix was not representative of the co-
variance structure assumed to be truly in the data, then that
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bootstrapped dataset was not fit by the source apportionment
model. There are numerous accept-reject criteria that could
be employed such that non-representative replicate datasets
would not be fit by PMF. For example, if certain marker
species or “rare event” sampling days were deemed critical
to the model fit, replicate datasets could be tested for suffi-
cient representation of those data before use in subsequent
analyses. This approach was avoided in the present discus-
sion in order to focus on the method’s performance with as
few practitioner-defined assumptions as possible. In certain
settings, however, such assumptions may be warranted.

With respect to the underlying choice of bootstrap method,
the effect of block length choice for speciated PM data
should be explored. It is known that thestationary block
bootstrap(SBB) of Politis and Romano (1994), which uses
random block lengths, is less sensitive to block size mis-
specification when compared to the CBB employed in the
present work, or the moving block bootstrap (MBB) used in
EPA PMF 1.1 (Politis and Romano, 1994). Thus, using the
SBB could provide a simple way of mitigating block size
misspecification. More sophisticated (and harder to imple-
ment) methods of addressing block size choice also exist. For
example, Christensen and Sain (2002) provide a bootstrap
variant and goodness-of-fit test for choosing a block size for
resampling multivariate data, and Rajagapolan (1999) devel-
oped ak-nearest-neighborbootstrap method for resampling
from a multivariate state space. Future investigation into, and
application of, bootstrapping schemes that best reproduce the
correlation structure in multivariate data is needed.
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