749 research outputs found

    Non-cyclic Geometric Phase due to Spatial Evolution in a Neutron Interferometer

    Full text link
    We present a split-beam neutron interferometric experiment to test the non-cyclic geometric phase tied to the spatial evolution of the system: the subjacent two-dimensional Hilbert space is spanned by the two possible paths in the interferometer and the evolution of the state is controlled by phase shifters and absorbers. A related experiment was reported previously by Hasegawa et al. [Phys. Rev. A 53, 2486 (1996)] to verify the cyclic spatial geometric phase. The interpretation of this experiment, namely to ascribe a geometric phase to this particular state evolution, has met severe criticism from Wagh [Phys. Rev. A 59, 1715 (1999)]. The extension to a non-cyclic evolution manifests the correctness of the interpretation of the previous experiment by means of an explicit calculation of the non-cyclic geometric phase in terms of paths on the Bloch-sphere.Comment: 4 pages, revtex

    Understanding the quantum Zeno effect

    Get PDF
    The quantum Zeno effect consists in the hindrance of the evolution of a quantum system that is very frequently monitored and found to be in its initial state at every single measurement. On the basis of the correct formula for the survival probability, i.e. the probability of finding the system in its initial state at every single measurement, we critically analyze a recent proposal and experimental test, that make use of an oscillating system.Comment: 9 pages, LaTeX, including 1 epsfigure, tar+gzip+uuencoded to appear in Phys. Lett.

    A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics

    Get PDF
    Industry 4.0 concepts and technologies ensure the ongoing development of micro- and macro-economic entities by focusing on the principles of interconnectivity, digitalization, and automation. In this context, artificial intelligence is seen as one of the major enablers for Smart Logistics and Smart Production initiatives. This paper systematically analyzes the scientific literature on artificial intelligence, machine learning, and deep learning in the context of Smart Logistics management in industrial enterprises. Furthermore, based on the results of the systematic literature review, the authors present a conceptual framework, which provides fruitful implications based on recent research findings and insights to be used for directing and starting future research initiatives in the field of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in Smart Logistics

    Decoherence in neutron interferometry at low transmission probability

    Get PDF
    Abstract We present a simplified and improved analysis of some recent experiments of neutron interferometry at low transmission probability. It is shown that both the density fluctuations of the elementary constituents of the absorber and the uncertainties in the sample thickness can be analyzed with the same formalism, and that they lead to a reduction of the visibility of the interference pattern. The effect is quantitatively estimated in the Gaussian case. In the context of quantum measurements, the process can be viewed as a partial dephasing characterized by the decoherence parameter. Possible experimental tests are proposed

    Engineering of triply entangled states in a single-neutron system

    Full text link
    We implemented a triply entangled Greenberger-Horne-Zeilinger(GHZ)-like state and coherently manipulated the spin, path, and energy degrees of freedom in a single neutron system. The GHZ-like state was analyzed with an inequality derived by Mermin: we determined the four expectation values and finally obtained M = 2.558 +/- 0.004 > 2, which exhibits a clear violation of the noncontextual assumption and confirms quantum contextuality.Comment: 4 pages, 2figure

    Kochen-Specker theorem studied with neutron interferometer

    Get PDF
    The Kochen-Specker theorem theoretically shows evidence of the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments by using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement in a single neutron system. Here entanglement is achieved not between different particles, but between degrees of freedom, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality of the Kochen-Specker theorem. The observed value of (2.291 +/- 0.008), which is above the threshold of 1, clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.Comment: 5 pages, 3 figure

    Depth of anesthesia by Narcotrend® and postoperative characteristics in children undergoing cardiac surgery under extracorporeal circulation: a retrospective comparison of two anesthetic regimens

    Get PDF
    Background: Depth of anesthesia may be insufficient in pediatric cardiac anesthesia if a total intravenous anesthetic regimen with opioids and midazolam is used during cardiopulmonary bypass. The advantages of sevoflurane-based balanced anesthesia may be (1) a more graduated regulation of the depth of anesthesia during cardiopulmonary bypass and (2) a reduction in postoperative ventilation time for children in comparison with total intravenous anesthesia. Aim: To evaluate a possibly positive effect of sevoflurane-based balanced anesthesia in children undergoing cardiac surgery we analyzed whether this anesthetic regimen had a significant effect related to (1) depth of anesthesia, (2) the need for opioids during cardiopulmonary bypass as well as on postoperative characteristics such as (3) time of postoperative ventilation, and (4) duration of stay in the intensive care unit in comparison with total intravenous anesthesia. Methods: In a retrospective analysis, data from heart-lung machine protocols from 2013 to 2016 were compared according to anesthetic regimen (sevoflurane-balanced anesthesia, n = 70 vs. total intravenous anesthesia, n = 65). Children (age: 8 weeks to 14 years) undergoing cardiac surgery with cardiopulmonary bypass were included. As a primary outcome measure, we compared Narcotrend® system–extracted data to detect insufficient phases of anesthetic depth during extracorporeal circulation under moderate hypothermia. Postoperatively, we measured the postoperative ventilation time and the number of days in the intensive care unit. Furthermore, we analyzed patients’ specific characteristics such as opioid consumption during cardiopulmonary bypass. Regression analysis relating primary objectives was done using the following variables: anesthetic regimen, age, severity of illness/surgery, and cumulative dosage of opiates during cardiopulmonary bypass. Results: No significant differences were observed in descriptive patient characteristics (age, body weight, height, and body temperature) between the two groups. Further, no significant differences were found in depth of anesthesia by analyzing phases of superficial B1-C2-electroencephalography Narcotrend® data. No marked difference between the groups was observed for the duration of postoperative intensive care unit stay. However, the postoperative ventilation time (median (95% CI, hours)) was significantly lower in the sevoflurane-based balanced anesthesia group (6.0 (2.0-15.0)) than in the total intravenous anesthesia group (13.5 (7.0-25)). A higher dosage of opioids and midazolam was required in the total intravenous anesthesia group to maintain adequate anesthesia during cardiopulmonary bypass. Regression analysis showed an additional, significant impact of the following factors: severity of illness and severity grade of cardiac surgery (according to Aristotle) on the primary endpoint. Conclusion: In children undergoing cardiac surgery in our department, the use of sevoflurane-balanced anesthesia during cardiopulmonary bypass showed no superiority of inhalational agents over total intravenous anesthesia with opioids and benzodiazepines preventing phases of superficial anesthesia, but a marked advantage for the postoperative ventilation time compared with total intravenous anesthesia
    • …
    corecore