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We present a simplified and improved analysis of some recent experiments of neutron interferometry at low transmission 
probability. It is shown that both the density fluctuations of the elementary constituents of the absorber and the uncertainties in 
the sample thickness can be analyzed with the same formalism, and that they lead to a reduction of the visibility of the interference 
pattern. The effect is quantitatively estimated in the Gaussian case. In the context of quantum measurements, the process can be 
viewed as a partial dephasing characterized by the decoherence parameter. Possible experimental tests are proposed. 

Recent  advances  in neutron in ter ferometry  have 
made  possible the invest igat ion of  fundamenta l  
quantum-mechanical  issues. Several experiments  that  
were at a gedanken level unti l  few years ago are now 
feasible, and  the very fundamenta l  postulates  o f  
quan tum mechanics  are now liable to exper imenta l  
check. 

Some exper iments  pe r fo rmed  a few years ago in 
Vienna [ l ], by insert ing a strong neutron absorber  
in one of  the two routes of  the interferometer,  yielded 
results at var iance with the theoret ical  p red ic t ion  for 
the visibili ty.  The exper imenta l  poin ts  lay remark-  
ably below the theoret ical  curve in the region o f  very 
low t ransmiss ion probabi l i ty .  

A tenta t ive  explanat ion  for this discrepancy was 
proposed  [2 ], and  the effect was ascr ibed to the 
presence o f  densi ty  f luctuat ions of  the e lementary  
const i tuents  o f  the neutron absorber.  On the other  
hand, a more  thorough analysis is required,  in par-  

t icular because the previous calculation neglected the 
presence o f  size uncertaint ies  o f  the absorber  itself. 
The problem has also been discussed from the mea- 
surement- theoret ical  point  o f  view [ 3 ], and  an inter- 
pre ta t ion  in terms o f  the decoherence pa ramete r  [4] 
was put  forward. 

The a im of  this note is threefold: First ,  we simplify 
the previous theoretical analysis [ 2 ], by showing that 
the presence of  statist ical  f luctuations a n d / o r  size 
uncertaint ies  leads to a considerable reduct ion o f  the 
vis ibi l i ty  o f  the neutron interference pat tern  at low 
t ransmiss ion probabil i ty .  Second, we explain the im- 
por tant  role played by the decoherence parameter  [ 4 ] 
in the in terpre ta t ion  o f  this experiment .  Third,  we 
put  forward practical experimental  proposals to check 
the soundness of  our  analysis. 

We shall start  by analyzing a typical  double  slit ex- 
per iment ,  and  by showing how the decoherence pa- 
rameter  emerges in a natural  way when statistical 
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fluctuations are considered. Let the incident neutron 
wave packet be split into two branch waves w, and 
I,+, corresponding to the two different routes in the 
apparatus, and assume that I,V~ interacts first with a 
phase shifter (PS) and then with an absorber (A). 
The first contributes a phase factor eis while the sec- 
ond is assumed to simply multiply the wave function 
by a transmission coefficient T, so that 

v2 +ei”TW2 . (1) 

If vi and v/z are in phase and It,~,l’= Iv/z12=1, the 
intensity after recombination of the two branch waves 
is 

=l+t+2Jtcos(a!+6), (2) 

where we have written T= I TI eiry, and have defined 
the transmission probability t = I TI 2. In this way, the 
visibility of the interference pattern is 

z z v= MAX - min 

Z~AX +z,i~ = I+t ’ (3) 

Notice that in the above formulae the dynamics of 
the macroscopic apparatuses has been ignored, and 
the effect of their interaction with the neutron wave 
function has been “summarized” by introducing two 
“constants” (6 and Tin eq. ( 1) ). Obviously, this is 
only an approximation, because both the phase shif- 
ter and the absorber are macrosystems made up of 
a huge number of elementary constituents, and char- 
acterized by a few macroscopic parameters whose 
value cannot determine precisely the details of the 
microscopic motion, so that their fluctuations and/ 
or uncertainties should be taken into account. Our 
first purpose is to analyze the soundness of approx- 
imation ( 1). 

First of all, observe that an interference pattern is 
made up of a certain number of experimental points, 
and in turn each of these points is obtained by, ac- 
cumulating the results relative to a very large num- 
ber of neutrons, that are sent into the interferometer 
through a weak and steady beam. Each point rep- 
resents the intensity detected in one of the two chan- 
nels (say the ordinary one), and is relative to a “pre- 
cise” value of the phase 6 acquired by each neutron 
after the interaction with the PS. This is obviously 
a very reasonable approximation: Indeed, a “good” 

phase shifter must yield a constant phase factor for 
every neutron in the same experimental run. Were 
this factor not “constant” (up to a very good ap- 
proximation), the interference experiment itself 
would be impossible to perform. 

But what about the transmission coefficient T! Is 
assumption ( 1) reasonable in this case? Not neces- 
sarily: There are two main reasons why the fluctua- 
tions of T, unlike those of 6, can be important. First, 
the absorber thickness D cannot be considered con- 
stant, from event to event, because of the sample in- 
homogeneities and the angular divergence of the 
beam. Second, even though, during an experimental 
run, the macroscopic state of the absorber A is always 
the same, each neutron will interact with a slightly 
different microscopic state of it, because the elemen- 
tary constituents of A are subject to their own in- 
ternal motion and their positions change all the time; 
moreover, different neutrons will go through (and 
interact with) different parts of the absorber, due to 
the finite lateral size of the beam. 

Let us try to take into account the possibility of 
fluctuation effects in the transmission coefficient and 
probability, by labelling different incoming neutrons 
with j u= 1, . . . . Np, where Np is the total number of 
neutrons in an experimental run): Write Tj for the 
transmission coefficient of the jth neutron, so that 
the average transmission coefficient and probability 
will be 

t=$$ r,, 
PJ ’ 

(4) 

and we have identified m with t, the experimen- 
tally measured value of the transmission probability. 
It follows that 

IT’I2<m=t, (6) 

so that it is possible to write 

IT’I2=t(l-E), (7) 

where e (0 G E < 1) has been named decoherence pa- 
rameter [2,4]. Its definition is therefore 

e=l_/, 
t (8) 
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Intensity and visibility (eqs. (2) and (3) ) become 

I'oc 1 + I TT~ + 2 Re(7~ei~) 

= 1 + t+  2x/~ x/1 - ~  cos(f l+6) , 

V ' =  2 x / ~ - ' )  = V lx/~-~ (9) 
l + t  

where V is defined in eq. (3), and we have written 
2V= [ TIe ip. One sees clearly that for ~= 1 interference 
disappears: This represents the case of total loss of  
coherence between the two branch waves. 

Our purpose is to give a simple (but rather ac- 
curate) estimate for E, and to show that it plays an 
important role in the analysis of  the aforementioned 
Vienna experiments [ 1 ]. 

Let us start by observing that the standard formula 
for the transmission probability of a neutron going 
through an array of (absorbing) scatterers is 

t o = e x p ( - t r , ( p ) ( D )  ) = e x p ( - ( n )  ) , (10) 

where a~ is the absorption cross section for the neu- 
tron-scatterer interaction, ( p )  the (average) den- 
sity of scatterers, and ( D )  the (average) thickness 
of  the absorber. The quantity ( n )  is interpreted as 
the average number of  scatterers met by the neutron 
during its interaction with A. In the Vienna exper- 
iments, A consisted of a G d - H 2 0  solution, so that 
the neutrons were mostly absorbed by the Gd atoms. 

There is a simple-minded (but very effective) 
interpretation of eq. ( 10): One assumes that, roughly 
speaking, as far as absorption and transmission prob- 
abilities are concerned, each neutron interacts with 
a small cylinder of  G d - H 2 0  solution. This cylinder 
has height roughly equal to the length of the ab- 
sorber, and base roughly equal to the neutron-Gd 
absorption cross section. Notice that l=  ( a ~ ( p ) ) - I  
is the mean free path of  a neutron for absorptive 
scattering by Gd atoms. We are neglecting the role 
of water in the process, because water does not 
strongly absorb neutrons. Moreover, the density 
fluctuations of  the water molecules are completely 
negligible when compared to Gd [2]. 

Due to the aforementioned reasons, the number of 
elementary constituents n met by every neutron fluc- 
tuates around its average value ( n ) ,  so that the 
transmission probability for a single event should be 
written 

t, = e x p ( - n ) ,  n=adgD, (11) 

where 

n = ( n ) + r n .  (12) 

We require the Gaussian properties for the fluctuat- 
ing components, 

( ~ n )  = 0 ,  ( ( ~ n ) 2 ) = g ( n ) ,  (13) 

where g (0 ~<g~< 1 ) is a parameter characterizing the 
fluctuation: The limiting cases g =  0, 1, correspond 
to absence of fluctuations and Poissonian fluctua- 
tions, respectively. The latter case represents the di- 
lute-solution limit, or alternatively an ideal-gas cor- 
relation function [ 5,2 ]. The parameter g represents 
the strength of the fluctuations, or alternatively, the 
size of  the uncertainties in some macroscopic pa- 
rameter, such as D. In principle, the p-dependence of 
g can be determined theoretically, but, in general, this 
is not an easy task because it would require, among 
others, a statistical-mechanical investigation of the 
molecular theory of a two-component liquid. On the 
other hand, the uncertainties of D depend on the ac- 
tual frabrication technique. As will be shown, how- 
ever, the value of g can be readily determined from 
experimental data. Note that the present definition 
o fg  is slightly different from the one proposed in ref. 
[ 2 ], where the role of water was not neglected. The 
main conclusions, however, will be essentially 
unaltered. 

In the above equations, ( . . . )  is a statistical ensem- 
ble average over the absorber microstates. We shall 
make the following ergodic hypothesis, 

. . . .  ( . . . ) ,  (14) 

where ~.. is the average over many particles, intro- 
duced in eqs. (4) and (5). From eqs. (11 ) - (14) ,  
and the Gaussian reduction formula, it is easy to 
obtain 

t=/-= ( t n )  =to exp(½g(n)  ) . (15) 

This is the first, important consequence of the ap- 
proach we propose: We infer that, unlike what is usu- 
ally believed, 

t ~ t o = e x p ( - a a ( p ) ( D )  ) = e x p ( - ( n )  ) . (16) 

Equation (16) is liable to experimental check: The 
values of the parameters t, aa, ( p )  and ( D )  are in- 
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deed all directly measurable. I f  t and to are found to 
be different, eq. (15) yields an experimental esti- 
mate for g. 

In this context, it is useful to observe that, as al- 
ready remarked in ref. [2], the typical value 
( p )  ~ 5 X 1026 [ m -  3 ],  repeatedly used previous pa- 
pers [ 1,2], is not correct, because it is obtained by 
making use of formula (10), and not ( 15 ). 

Notice that, in the above analysis, we have not 

specified the origin of  the of  the fluctuations of n. 
Since, by definition, n = a~oD, its fluctuations can be 
ascribed to density (p) fluctuations of  the Gd atoms 
in the water solution, as well as to uncertainties in 
the sample thickness D. This is true, of course, within 
the limits of validity of  eq. (10), which is based on 
the Goldberger formula (see the following equa- 
tion). A more exhaustive quantum-mechanical anal- 
ysis should start from the Dyson series of  the inter- 
action Hamiltonian for the neutron-Gd interaction, 
as outlined in ref. [2]. 

In order to analyze the effect of  statistical fluctua- 
tions on the transmission coefficient, we start from 
the well-known Goldberger formula [6] 

T, =exp[  - (igbR + ½aa)pO] 

=exp[  - ½n( 1 +2i2bR/aa)  ] ,  (17) 

where bR is the real part of  the scattering length of 
the elastic neutron-Gd collision, and G the absorp- 
tion cross section for neutron-Gd. Once again, for 
the sake of simplicity, we are neglecting the role of 
water. This assumption is sound, because water con- 
tributes an almost constant factor in the transmis- 
sion coefficient. 

From eqs. ( 17 ), ( 12 ) -  ( 14 ), and the Gaussian re- 
duction formula, we immediately obtain 

T =  ( Tn ) = To exp[ ~ g ( n )  ( 1 + 2i2bR/G) 2 ] , 

1 o - e x p [  - ½ ( n )  ( 1 + 2i2bR/a~) ] , (18) 

where, obviously, ] To 12 = to. From eqs. (15) and 
( 18 ) we readily obtain 

2g (2bR)2+tY 2 (19) 
lT~12=tl+y' Y = 2 - - g  a~ ' 

and the visibility can be rewritten in terms of y as 

2tO+~)/2 
V'  = - -  = Vt ~/2 , (20 )  

l + t  

where V is defined in eq. (3). It is worth stressing 
that the above equation is liable to direct experi- 
mental check: By inferring the value of g from eq. 
(15), we can test the validity of eq. (20). 

Let us briefly discuss the main consequences of our 
analysis. We have shown that, if uncertainties and 
fluctuations are taken into account, the usually ac- 
cepted relation between transmission coefficient and 
probability ( I TI 2 = t) is not valid anymore, and must 
be replaced by eq. (19). Accordingly, the value of 
the visibility is reduced by a factor U/2, as shown by 
e q .  (20). This immediately suggests how the effect 
we are anticipating could be checked experimentally: 
Indeed, the correction to the visibility expressed by 
eq. (20) is negligible when t~  1, but becomes dra- 
matically important when t~0 .  This makes us un- 
derstand why it is reasonable to expect a reduction 
of the visibility at extremely low values of the trans- 
mission probability, and is in agreement with some 
preliminary experimental data [1]. We stress that 
the present analysis, though simplified with respect 
to a previous one [ 2 ], yields essentially the same re- 
sults, as far as the role played by water can be 
neglected. 

An experimental verification could also be 
achieved by measurements with grained absorbing 
phase shifters inserted in one beam path of a neutron 
interferometer of by using an absorbing material near 
a critical transition point. In the first case, different 
beam paths through the sample have distinctly dif- 
ferent absorption probabilities, and the expectation 
value (. . .)z has to be taken over different beam paths 
contributing to the interference pattern. Similarities 
to the Christiansen filter method where the real part 
of the phase shift is varied are obvious [7]. In the 
second case, a time average (...)~ has to be consid- 
ered, because the critical fluctuations cause varying 
absorption probabilities due to the marked density 
fluctuations which appear as an enhanced visibility 
of the interference pattern near to the phase transi- 
tion point. In the latter case, the theoretical treat- 
ment must be modified to account for the presence 
of long relaxation time and correlation length. 

It is also very interesting to discuss the above re- 
sults from a measurement-theoretical point of view. 
The decoherence parameter is readily evaluated by 
eq. (8) as 
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~= 1 - e x p {  - ~g(n) [1 + 4 (2bR/o'a)2 ] "} 

= 1 - e x p { - g ( n )  [ (2bR)2 + a2 ] / a  2 } 

= c ( g ,  ( n ) ) ,  (21)  

and can be expressed in terms o f  t and 7 as 

e =  1 - t  r . ( 2 2 )  

Analogously to the case o f  the visibil i ty,  discussed 
before,  this implies  that  even though, at high trans- 
mission probabi l i ty  (t  = 1 ) fluctuation effects are not  
observable,  they become dramat ica l ly  impor tan t  
when t ~ 0 .  In such a case, ~ 1, and  quan tum co- 
herence is totally lost. Observe that  this effect is 
complete ly  independent  of  the fact that  one o f  the 
two branch waves is (a lmos t )  total ly absorbed:  In- 
deed, even i f  t is extremely small  (say, of  the order  
of  10-5) ,  both  branch waves are still present in the 
interferometer ,  and  always give rise to interference. 
The poin t  is that  this interference is drastically re- 
duced with respect to its expected value (3) .  

The above formulae  show that  f luctuat ions exist- 
ing intrinsically in any appara tus  influence the ex- 
per imenta l  outcome o f  any exper iment .  Thei r  influ- 
ence becomes very pronounced  in interference 
exper iments  when a very weak signal emerging f rom 
one beam pa th  and having intr insical ly strong fluc- 
tuat ions  de termines  the interference phenomena.  In 
this sense, one can state that  perfect measurements  
are impossible even in principle, when the micro-  

scopic structure of  the absorber  is taken into ac- 
count. This  poin t  is impor tan t  both  f rom an epis- 
temological  and  measurement- theore t ica l  poin t  of  
view [ 4 ]. 

One o f  us (SP)  was par t ia l ly  suppor ted  by the Ital- 
ian C N R  under  the bi la tera l  project  I t a l y - J a p a n  no. 
91.00184.CT02. 
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