160 research outputs found

    An Fc-modified monoclonal antibody as novel treatment option for pancreatic cancer

    Get PDF
    Pancreatic cancer is a highly lethal disease with limited treatment options. Hence, there is a considerable medical need for novel treatment strategies. Monoclonal antibodies (mAbs) have significantly improved cancer therapy, primarily due to their ability to stimulate antibody-dependent cellular cytotoxicity (ADCC), which plays a crucial role in their therapeutic efficacy. As a result, significant effort has been focused on improving this critical function by engineering mAbs with Fc regions that have increased affinity for the Fc receptor CD16 expressed on natural killer (NK) cells, the major cell population that mediates ADCC in humans. Here we report on the preclinical characterization of a mAb directed to the target antigen B7-H3 (CD276) containing an Fc part with the amino acid substitutions S239D/I332E to increase affinity for CD16 (B7-H3-SDIE) for the treatment of pancreatic cancer. B7-H3 (CD276) is highly expressed in many tumor entities, whereas expression on healthy tissues is more limited. Our findings confirm high expression of B7-H3 on pancreatic cancer cells. Furthermore, our study shows that B7-H3-SDIE effectively activates NK cells against pancreatic cancer cells in an antigen-dependent manner, as demonstrated by the analysis of NK cell activation, degranulation and cytokine release. The activation of NK cells resulted in significant tumor cell lysis in both short-term and long-term cytotoxicity assays. In conclusion, B7-H3-SDIE constitutes a promising agent for the treatment of pancreatic cancer

    The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells

    Get PDF
    BACKGROUND: Dendritic cells (DC) are the most potent antigen-presenting cells (APC) with the unique ability to activate naïve T cells and to initiate and maintain primary immune responses. Immunosuppressive and anti-inflammatory stimuli on DC such as the cytokine IL-10 suppress the activity of the transcription factor NF-κB what results in downregulation of costimulatory molecules, MHC and cytokine production. Glycoprotein NMB (GPNMB) is a transmembrane protein, which acts as a coinhibitory molecule strongly inhibiting T cell responses if present on APC. Interestingly, its expression on human monocyte-derived dendritic cells (moDC) is dramatically upregulated upon treatment with IL-10 but also by the BCR-ABL tyrosine kinase inhibitors (TKI) imatinib, nilotinib or dasatinib used for the treatment of chronic myeloid leukemia (CML). However, the molecular mechanisms responsible for GPNMB overexpression are yet unknown. RESULTS: The immunosuppressive cytokine IL-10 and the BCR-ABL TKI imatinib or nilotinib, that were examined here, concordantly inhibit the PI3K/Akt signaling pathway, thereby activating the downstream serine/threonine protein kinase GSK3ß, and subsequently the microphthalmia-associated transcription factor (MITF) that is phosphorylated and translocated into the nucleus. Treatment of moDC with a small molecule inhibitor of MITF activity reduced the expression of GPNMB at the level of mRNA and protein, indicating that GPNMB expression is in fact facilitated by MITF activation. In line with these findings, PI3K/Akt inhibition was found to result in GPNMB overexpression accompanied by reduced stimulatory capacity of moDC in mixed lymphocyte reactions (MLR) with allogeneic T cells that could be restored by addition of the GPNMB T cell ligand syndecan-4 (SD-4). CONCLUSIONS: In summary, imatinib, nilotinib or IL-10 congruently inhibit the PI3K/Akt signaling pathway thereby activating MITF in moDC, resulting in a tolerogenic phenotype. These findings extend current knowledge on the molecular mechanisms balancing activating and inhibitory signals in human DC and may facilitate the targeted manipulation of T cell responses in the context of DC-based immunotherapeutic interventions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12964-015-0099-5) contains supplementary material, which is available to authorized users

    Soluble Triggering Receptor Expressed on Myeloid Cells 1 Is Released in Patients with Stable Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is increasingly recognized as a systemic disease that is associated with increased serum levels of markers of systemic inflammation. The triggering receptor expressed on myeloid cells 1 (TREM-1) is a recently identified activating receptor on neutrophils, monocytes, and macrophage subsets. TREM-1 expression is upregulated by microbial products such as the toll-like receptor ligand lipoteichoic acid of Gram-positive or lipopolysaccharides of Gram-negative bacteria. In the present study, sera from 12 COPD patients (GOLD stages I–IV, FEV1 51 ± 6%) and 10 healthy individuals were retrospectively analyzed for soluble TREM-1 (sTREM-1) using a newly developed ELISA. In healthy subjects, sTREM-1 levels were low (median 0.25 ng/mL, range 0–5.9 ng/mL). In contrast, levels of sTREM-1 in sera of COPD patients were significantly increased (median 11.68 ng/mL, range 6.2–41.9 ng/mL, P<.05). Furthermore, serum levels of sTREM-1 showed a significant negative correlation with lung function impairment. In summary, serum concentrations of sTREM-1 are increased in patients with COPD. Prospective studies are warranted to evaluate the relevance of sTREM-1 as a potential marker of the disease in patients with COPD

    More Than Just Tumor Destruction: Immunomodulation by Thermal Ablation of Cancer

    Get PDF
    Over the past decades, thermoablative techniques for the therapy of localized tumors have gained importance in the treatment of patients not eligible for surgical resection. Anecdotal reports have described spontaneous distant tumor regression after thermal ablation, indicating a possible involvement of the immune system, hence an induction of antitumor immunity after thermoinduced therapy. In recent years, a growing body of evidence for modulation of both adaptive and innate immunity, as well as for the induction of danger signals through thermoablation, has emerged. Induced immune responses, however, are mostly weak and not sufficient for the complete eradication of established tumors or durable prevention of disease progression, and combination therapies with immunomodulating drugs are being evaluated with promising results. This article aims to summarize published findings on immune modulation through radiofrequency ablation, cryoablation, microwave ablation therapy, high-intensity focused ultrasound, and laser-induced thermotherapy

    HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy

    Get PDF
    Genome sequencing has uncovered an array of recurring somatic mutations in different non-Hodgkin lymphoma (NHL) subtypes. If affecting protein-coding regions, such mutations may yield mutation-derived peptides that may be presented by HLA class I proteins and recognized by cytotoxic T cells. A recurring somatic and oncogenic driver mutation of the Toll-like receptor adaptor protein MYD88, Leu265Pro (L265P) was identified in up to 90% of different NHL subtype patients. We therefore screened the potential of MYD88(L265P)-derived peptides to elicit cytotoxic T cell responses as tumor-specific neoantigens. Based on in silico predictions, we identified potential MYD88(L265P)-containing HLA ligands for several HLA class I restrictions. A set of HLA class I MYD88(L265P)-derived ligands elicited specific cytotoxic T cell responses for HLA-B*07 and -B*15. These data highlight the potential of MYD88(L265P) mutation-specific peptide-based immunotherapy as a novel personalized treatment approach for patients with MYD88(L265P+) NHLs that may complement pharmacological approaches targeting oncogenic MyD88 L265P signaling

    CK2b regulates thrombopoiesis and Ca21-Triggered platelet activation in arterial thrombosis

    Get PDF
    © 2017 by The American Society of Hematology. Platelets, anucleated megakaryocyte (MK)-derived cells, play a major role in hemostasis and arterial thrombosis. Although protein kinase casein kinase 2 (CK2) is readily detected in MKs and platelets, the impact of CK2-dependent signaling on MK/platelet (patho-) physiology has remained elusive. The present study explored the impact of the CK2 regulatory b-subunit on platelet biogenesis and activation. MK/platelet-specific genetic deletion of CK2β (ck2β-/-) in mice resulted in a significant macrothrombocytopenia and an increased extramedullar megakaryopoiesis with an enhanced proportion of premature platelets. Although platelet life span was only mildly affected, ck2β-/- MK displayed an abnormal microtubule structure with a drastically increased fragmentation within bone marrow and a significantly reduced proplatelet formation in vivo. In ck2β-/- platelets, tubulin polymerization was disrupted, resulting in an impaired thrombopoiesis and an abrogated inositol 1,4,5-Triphosphate receptor-dependent intracellular calcium (Ca21) release. Presumably due to a blunted increase in the concentration of cytosolic Ca21, activation-dependent increases of a and dense-granule secretion and integrin aIIbb3 activation, and aggregation were abrogated in ck2β-/- platelets. Accordingly, thrombus formation and stabilization under high arterial shear rates were significantly diminished, and thrombotic vascular occlusion in vivo wassignificantly blunted in ck2β-/- mice, accompanied by a slight prolongation of bleeding time. Following transient middle cerebral artery occlusion, ck2b-/- mice displayed significantly reduced cerebral infarct volumes, developed significantly less neurological deficits, and showed significantly better outcomes after ischemic stroke than ck2βfl/fl mice. The present observations reveal CK2b as a novel powerful regulator of thrombopoiesis, Ca2+-dependent platelet activation, and arterial thrombosis in vivo

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore