977 research outputs found

    Modeling the ballistic-to-diffusive transition in nematode motility reveals variation in exploratory behavior across species

    Full text link
    A quantitative understanding of organism-level behavior requires predictive models that can capture the richness of behavioral phenotypes, yet are simple enough to connect with underlying mechanistic processes. Here we investigate the motile behavior of nematodes at the level of their translational motion on surfaces driven by undulatory propulsion. We broadly sample the nematode behavioral repertoire by measuring motile trajectories of the canonical lab strain C.elegansC. elegans N2 as well as wild strains and distant species. We focus on trajectory dynamics over timescales spanning the transition from ballistic (straight) to diffusive (random) movement and find that salient features of the motility statistics are captured by a random walk model with independent dynamics in the speed, bearing and reversal events. We show that the model parameters vary among species in a correlated, low-dimensional manner suggestive of a common mode of behavioral control and a trade-off between exploration and exploitation. The distribution of phenotypes along this primary mode of variation reveals that not only the mean but also the variance varies considerably across strains, suggesting that these nematode lineages employ contrasting ``bet-hedging'' strategies for foraging.Comment: 46 pages, 18 figures, 6 table

    Developing a Holistic Competence Model for Telenursing Practice: Perspectives from Telenurses and Managers of Telemedical Service Centres

    Get PDF
    Telenurse’s work performance determines the quality and the efficiency of the service and strongly influences the acceptance of patients and healthcare professionals. Considering this important role, qualification and training of telenurses is of utmost importance for the success of telemedicine providers and the future of telemedicine. However, in Germany the profession “telenurse” is not yet established, nor is there a standardised education programme for telenurses. Purpose: In our study, we seek to identify and describe needed competencies from the perspectives of employees and employers in telemedicine service centres. We develop a systematic competencies concept fundamental for a specific telenurse education curriculum. Methods: We designed an exploratory study as a series of semi-standardised interviews with telenurses and the management of telenursing centres, focusing on knowledge, skills and attitudes needed in telenursing practice. Results: By including the perspectives of employers and employees, we provide a broad view on the skills and competencies needed. We show that telenursing requires a great variety of competencies that can be structured into four categories: professional, methodological, personal and social competencies. Conclusion: Our study provides a comprehensive approach to key competencies of telenurses. The results set out a framework for the development of skills and competencies considering the perception of the telenurse-workplace not only from employers but also from employee’s perspective

    Conformational Entropy as a Means to Control the Behavior of Poly(diketoenamine) Vitrimers In and Out of Equilibrium.

    Get PDF
    Control of equilibrium and non-equilibrium thermomechanical behavior of poly(diketoenamine) vitrimers is shown by incorporating linear polymer segments varying in molecular weight (MW) and conformational degrees of freedom into the dynamic covalent network. While increasing MW of linear segments yields a lower storage modulus at the rubbery plateau after softening above the glass transition (Tg ), both Tg and the characteristic time of stress relaxation are independently governed by the conformational entropy of the embodied linear segments. Activation energies for bond exchange in the solid state are lower for networks incorporating flexible chains; the network topology freezing temperature decreases with increasing MW of flexible linear segments but increases with increasing MW of stiff segments. Vitrimer reconfigurability is therefore influenced not only by the energetics of bond exchange for a given network density, but also the entropy of polymer chains within the network

    Telemedical Support in Patients with Chronic Heart Failure: Experience from Different Projects in Germany

    Get PDF
    The great epidemiological significance and costs associated with chronic heart failure pose a challenge to health systems in Western industrial countries. In the past few years, controlled randomised studies have shown that patients with chronic heart failure benefit from telemedical monitoring; specifically, telemonitoring of various vital parameters combined with a review of the symptoms, drug compliance and patient education. In Germany, various telemedical monitoring projects for patients with chronic heart failure have been initiated in the past few years; seven of them are presented here. Currently 7220 patients are being monitored in the seven selected projects. Most patients (51.1%) are in NYHA stage II, 26.3% in NYHA stage III, 14.5% in NYHA stage I and only 6.6% in NYHA stage IV respectively. Most projects are primarily regional. Their structure of telemedical monitoring tends to be modular and uses stratification according to the NYHA stages. All projects include medical or health economics assessments. The future of telemedical monitoring projects for patients with chronic heart failure will depend on the outcome of these assessments. Only of there is statistical evidence for medical benefit to the individual patient as well as cost savings will these projects continue

    Optimization and Validation of Methods for Mapping of the Radiofrequency Transmit Field at 3T

    Get PDF
    MRI techniques such as quantitative imaging and parallel transmit require precise knowledge of the radio-frequency transmit field (). Three published methods were optimized for robust mapping at 3T in the human brain: three-dimensional (3D) actual flip angle imaging (AFI), 3D echo-planar imaging (EPI), and two-dimensional (2D) stimulated echo acquisition mode (STEAM). We performed a comprehensive comparison of the methods, focusing on artifacts, reproducibility, and accuracy compared to a reference 2D double angle method. For the 3D AFI method, the addition of flow-compensated gradients for diffusion damping reduced the level of physiological artifacts and improved spoiling of transverse coherences. Correction of susceptibility-induced artifacts alleviated image distortions and improved the accuracy of the 3D EPI imaging method. For the 2D STEAM method, averaging over multiple acquisitions reduced the impact of physiological noise and a new calibration method enhanced the accuracy of the maps. After optimization, all methods yielded low noise maps (below 2 percentage units), of the nominal flip angle value (p.u.) with a systematic bias less than 5 p.u. units. Full brain coverage was obtained in less than 5 min. The 3D AFI method required minimal postprocessing and showed little sensitivity to off-resonance and physiological effects. The 3D EPI method showed the highest level of reproducibility. The 2D STEAM method was the most time-efficient technique. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc

    Reconfigurable ferromagnetic liquid droplets.

    Get PDF
    Solid ferromagnetic materials are rigid in shape and cannot be reconfigured. Ferrofluids, although reconfigurable, are paramagnetic at room temperature and lose their magnetization when the applied magnetic field is removed. Here, we show a reversible paramagnetic-to-ferromagnetic transformation of ferrofluid droplets by the jamming of a monolayer of magnetic nanoparticles assembled at the water-oil interface. These ferromagnetic liquid droplets exhibit a finite coercivity and remanent magnetization. They can be easily reconfigured into different shapes while preserving the magnetic properties of solid ferromagnets with classic north-south dipole interactions. Their translational and rotational motions can be actuated remotely and precisely by an external magnetic field, inspiring studies on active matter, energy-dissipative assemblies, and programmable liquid constructs

    Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis

    Get PDF
    The synthetic material Nanobone® (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone®, while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone® showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone® appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone® also in humans
    corecore