83 research outputs found

    Bloodstream form trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes

    Get PDF
    Trypanosoma brucei possesses five metacaspase genes. Of these, MCA2 and MCA3 are expressed only in the mammalian bloodstream form of the parasite, whereas MCA5 is expressed also in the insect procyclic form. Triple RNAi analysis showed MCA2, MCA3 and MCA5 to be essential in the bloodstream form, with parasites accumulating pre-cytokinesis. Nevertheless, triple null mutants (Δmca2/3Δmca5) could be isolated after sequential gene deletion. Thereafter, Δmca2/3Δmca5 mutants were found to grow well both in vitro in culture and in vivo in mice. We hypothesise that metacaspases are essential for bloodstream form parasites, but they have overlapping functions and their progressive loss can be compensated for by activation of alternative biochemical pathways. Analysis of Δmca2/3Δmca5 revealed no greater or lesser susceptibility to stresses reported to initiate programmed cell death, such as treatment with prostaglandin D2. The metacaspases were found to colocalise with RAB11, a marker for recycling endosomes. However, variant surface glycoprotein (VSG) recycling processes and the degradation of internalised anti-VSG antibody were found to occur similarly in wild type, Δmca2/3Δmca5 and triple RNAi induced parasites. Thus, the data provide no support for the direct involvement of T. brucei metacaspases in programmed cell death and suggest that the proteins have a function associated with RAB11 vesicles that is independent of known recycling processes of RAB11-positive endosomes

    Draft Aphaenogaster genomes expand our view of ant genome size variation across climate gradients

    Get PDF
    Given the abundance, broad distribution, and diversity of roles that ants play in many ecosystems, they are an ideal group to serve as ecosystem indicators of climatic change. At present, only a few whole-genome sequences of ants are available (19 of \u3e16,000 species), mostly from tropical and sub-tropical species. To address this limited sampling, we sequenced genomes of temperate-latitude species from the genus Aphaenogaster, a genus with important seed dispersers. In total, we sampled seven colonies of six species: Aphaenogaster ashmeadi, Aphaenogaster floridana, Aphaenogaster fulva, Aphaenogaster miamiana, Aphaenogaster picea, and Aphaenogaster rudis. The geographic ranges of these species collectively span eastern North America from southern Florida to southern Canada, which encompasses a latitudinal gradient in which many climatic variables are changing rapidly. For the six genomes, we assembled an average of 271,039 contigs into 47,337 scaffolds. The Aphaenogaster genomes displayed high levels of completeness with 96.1% to 97.6% of Hymenoptera BUSCOs completely represented, relative to currently sequenced ant genomes which ranged from 88.2% to 98.5%. Additionally, the mean genome size was 370.5 Mb, ranging from 310.3 to 429.7, which is comparable to that of other sequenced ant genomes (212.8-396.0 Mb) and flow cytometry estimates (210.7-690.4 Mb). In an analysis of currently sequenced ant genomes and the new Aphaenogaster sequences, we found that after controlling for both spatial autocorrelation and phylogenetics ant genome size was marginally correlated with sample site climate similarity. Of all examined climate variables, minimum temperature, and annual precipitation had the strongest correlations with genome size, with ants from locations with colder minimum temperatures and higher levels of precipitation having larger genomes. These results suggest that climate extremes could be a selective force acting on ant genomes and point to the need for more extensive sequencing of ant genomes

    Through a Glass, Darkly:The CIA and Oral History

    Get PDF
    This article broaches the thorny issue of how we may study the history of the CIA by utilizing oral history interviews. This article argues that while oral history interviews impose particular demands upon the researcher, they are particularly pronounced in relation to studying the history of intelligence services. This article, nevertheless, also argues that while intelligence history and oral history each harbour their own epistemological perils and biases, pitfalls which may in fact be pronounced when they are conjoined, the relationship between them may nevertheless be a productive one. Indeed, each field may enrich the other provided we have thought carefully about the linkages between them: this article's point of departure. The first part of this article outlines some of the problems encountered in studying the CIA by relating them to the author's own work. This involved researching the CIA's role in US foreign policy towards Afghanistan since a landmark year in the history of the late Cold War, 1979 (i.e. the year the Soviet Union invaded that country). The second part of this article then considers some of the issues historians must confront when applying oral history to the study of the CIA. To bring this within the sphere of cognition of the reader the author recounts some of his own experiences interviewing CIA officers in and around Washington DC. The third part then looks at some of the contributions oral history in particular can make towards a better understanding of the history of intelligence services and the CIA

    Host plant quality, spatial heterogeneity, and the stability of mite predator–prey dynamics

    Get PDF
    Population dynamics models suggest that both the over-all level of resource productivity and spatial variability in productivity can play important roles in community dynamics. Higher productivity environments are predicted to destabilize consumer–resource dynamics. Conversely, greater heterogeneity in resource productivity is expected to contribute to stability. Yet the importance of these two factors for the dynamics of arthropod communities has been largely overlooked. I manipulated nutrient availability for strawberry plants in a multi-patch experiment, and measured effects of overall plant quality and heterogeneity in plant quality on the stability of interactions between the phytophagous mite Tetranychus urticae and its predator Phytoseiulus persimilis. Plant size, leaf N content and T. urticae population growth increased monotonically with increasing soil nitrogen availability. This gradient in plant quality affected two correlates of mite population stability, population variability over time (i.e., coefficient of variation) and population persistence (i.e., proportion of plant patches colonized). However, the highest level of plant quality did not produce the least stable dynamics, which is inconsistent with the “paradox of enrichment”. Heterogeneity in plant productivity had modest effects on stability, with the only significant difference being less variable T. urticae densities in the heterogeneous compared to the corresponding homogeneous treatment. These results are generally congruent with metapopulation theory and other models for spatially segregated populations, which predict that stability should be governed largely by relative movement rates of predators and prey—rather than patch quality

    Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges

    Get PDF
    A broad diversity of biological organisms and systems interact with soil in ways that facilitate their growth and survival. These interactions are made possible by strategies that enable organisms to accomplish functions that can be analogous to those required in geotechnical engineering systems. Examples include anchorage in soft and weak ground, penetration into hard and stiff subsurface materials and movement in loose sand. Since the biological strategies have been ‘vetted’ by the process of natural selection, and the functions they accomplish are governed by the same physical laws in both the natural and engineered environments, they represent a unique source of principles and design ideas for addressing geotechnical challenges. Prior to implementation as engineering solutions, however, the differences in spatial and temporal scales and material properties between the biological environment and engineered system must be addressed. Current bio-inspired geotechnics research is addressing topics such as soil excavation and penetration, soil–structure interface shearing, load transfer between foundation and anchorage elements and soils, and mass and thermal transport, having gained inspiration from organisms such as worms, clams, ants, termites, fish, snakes and plant roots. This work highlights the potential benefits to both geotechnical engineering through new or improved solutions and biology through understanding of mechanisms as a result of cross-disciplinary interactions and collaborations
    corecore