110 research outputs found

    How mutualisms arise in phytoplankton communities: building eco-evolutionary principles for aquatic microbes.

    Get PDF
    Extensive sampling and metagenomics analyses of plankton communities across all aquatic environments are beginning to provide insights into the ecology of microbial communities. In particular, the importance of metabolic exchanges that provide a foundation for ecological interactions between microorganisms has emerged as a key factor in forging such communities. Here we show how both studies of environmental samples and physiological experimentation in the laboratory with defined microbial co-cultures are being used to decipher the metabolic and molecular underpinnings of such exchanges. In addition, we explain how metabolic modelling may be used to conduct investigations in reverse, deducing novel molecular exchanges from analysis of large-scale data sets, which can identify persistently co-occurring species. Finally, we consider how knowledge of microbial community ecology can be built into evolutionary theories tailored to these species' unique lifestyles. We propose a novel model for the evolution of metabolic auxotrophy in microorganisms that arises as a result of symbiosis, termed the Foraging-to-Farming hypothesis. The model has testable predictions, fits several known examples of mutualism in the aquatic world, and sheds light on how interactions, which cement dependencies within communities of microorganisms, might be initiated.EK is grateful for funding from UKERC and EU FP7 DEMA project, grant agreement no. 309086. KEH was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC), grant BB/I013164/1.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/ele.12615

    Reduced H+ channel activity disrupts pH homeostasis and calcification in coccolithophores at low ocean pH

    Get PDF
    Coccolithophores are major producers of ocean biogenic calcite, but this process is predicted to be negatively affected by future ocean acidification scenarios. Since coccolithophores calcify intracellularly, the mechanisms through which changes in seawater carbonate chemistry affect calcification remain unclear. Here we show that voltage-gated H+ channels in the plasma membrane of Coccolithus braarudii serve to regulate pH and maintain calcification under normal conditions but have greatly reduced activity in cells acclimated to low pH. This disrupts intracellular pH homeostasis and impairs the ability of C. braarudii to remove H+ generated by the calcification process, leading to specific coccolith malformations. These coccolith malformations can be reproduced by pharmacological inhibition of H+ channels. Heavily calcified coccolithophore species such as C. braarudii, which make the major contribution to carbonate export to the deep ocean, have a large intracellular H+ load and are likely to be most vulnerable to future decreases in ocean pH

    Progressive Development of Aberrant Smooth Muscle Cell Phenotype in Abdominal Aortic Aneurysm Disease

    Get PDF
    Abdominal aortic aneurysm (AAA) is a silent, progressive disease with a high mortality and an increasing prevalence with aging. Smooth muscle cell (SMC) dysfunction contributes to gradual dilatation and eventual rupture of the aorta. Here we studied phenotypic characteristics in SMC cultured from end-stage human AAA (≥5 cm) and cells cultured from a porcine carotid artery (PCA) model of early and end-stage aneurysm. Human AAA-SMC presented a secretory phenotype and expressed elevated levels of the differentiation marker miR-145 (2.2-fold, p < 0.001) and the senescence marker SIRT-1 (1.3-fold, p < 0.05), features not recapitulated in aneurysmal PCA-SMC. Human and end-stage porcine aneurysmal cells were frequently multi-nucleated (3.9-fold, p < 0.001, and 1.8-fold, p < 0.01, respectively, vs. control cells) and displayed an aberrant nuclear morphology. Human AAA-SMC exhibited higher levels of the DNA damage marker γH2AX (3.9-fold, p < 0.01, vs. control SMC). These features did not correlate with patients' chronological age and are therefore potential markers for pathological premature vascular aging. Early-stage PCA-SMC (control and aneurysmal) were indistinguishable from one another across all parameters. The principal limitation of human studies is tissue availability only at the end stage of the disease. Refinement of a porcine bioreactor model would facilitate the study of temporal modulation of SMC behaviour during aneurysm development and potentially identify therapeutic targets to limit AAA progression

    Preservation of Smooth Muscle Cell Integrity and Function: A Target for Limiting Abdominal Aortic Aneurysm Expansion?

    Get PDF
    (1) Abdominal aortic aneurysm (AAA) is a silent, progressive disease with significant mortality from rupture. Whilst screening programmes are now able to detect this pathology early in its development, no therapeutic intervention has yet been identified to halt or retard aortic expansion. The inability to obtain aortic tissue from humans at early stages has created a necessity for laboratory models, yet it is essential to create a timeline of events from EARLY to END stage AAA progression. (2) We used a previously validated ex vivo porcine bioreactor model pre-treated with protease enzyme to create “aneurysm” tissue. Mechanical properties, histological changes in the intact vessel wall, and phenotype/function of vascular smooth muscle cells (SMC) cultured from the same vessels were investigated. (3) The principal finding was significant hyperproliferation of SMC from EARLY stage vessels, but without obvious histological or SMC aberrancies. END stage tissue exhibited histological loss of α-smooth muscle actin and elastin; mechanical impairment; and, in SMC, multiple indications of senescence. (4) Aortic SMC may offer a therapeutic target for intervention, although detailed studies incorporating intervening time points between EARLY and END stage are required. Such investigations may reveal mechanisms of SMC dysfunction in AAA development and hence a therapeutic window during which SMC differentiation could be preserved or reinstated

    Cryptic bacterial pathogens of diatoms peak during senescence of a winter diatom bloom

    Get PDF
    Diatoms are globally abundant microalgae that form extensive blooms in aquatic ecosystems. Certain bacteria behave antagonistically towards diatoms, killing or inhibiting their growth. Despite their crucial implications to diatom bloom and population health, knowledge of diatom antagonists in the environment is fundamentally lacking. We report systematic characterisation of the diversity and seasonal dynamics of bacterial antagonists of diatoms via plaque assay sampling in the Western English Channel, where diatoms frequently bloom. Unexpectedly, peaks in detection did not occur during characteristic spring diatom blooms, but coincided with a winter bloom of Coscinodiscus, suggesting that these bacteria likely influence distinct diatom host populations. We isolated multiple bacterial antagonists, spanning 4 classes and 10 bacterial orders. Notably, a diatom attaching Roseobacter Ponticoccus alexandrii was isolated multiple times, indicative of a persistent environmental presence. Moreover, many isolates had no prior reports of antagonistic activity towards diatoms. We verified diatom growth inhibitory effects of eight isolates. In all cases tested, these effects were activated by pre-exposure to diatom organic matter. Discovery of widespread ‘cryptic’ antagonistic activity indicates that bacterial pathogenicity towards diatoms is more prevalent than previously recognised. Finally, examination of the global biogeography of WEC antagonists revealed co-occurrence patterns with diatom host populations in marine waters globally

    A Novel Ca2+ Signaling Pathway Coordinates Environmental Phosphorus Sensing and Nitrogen Metabolism in Marine Diatoms

    Get PDF
    Diatoms are a diverse and globally important phytoplankton group, responsible for an estimated 20% of carbon fixation on Earth. They frequently form spatially extensive phytoplankton blooms, responding rapidly to increased availability of nutrients, including phosphorus (P) and nitrogen (N). Although it is well established that diatoms are common first responders to nutrient influxes in aquatic ecosystems, little is known of the sensory mechanisms that they employ for nutrient perception. Here, we show that P-limited diatoms use a Ca2+-dependentsignaling pathway, notpreviouslydescribed ineukaryotes,tosenseandrespondto thecritical macronutrient P. We demonstrate that P-Ca2+ signaling is conserved between a representative pennate (Phaeodactylum tricornutum) and centric (Thalassiosira pseudonana) diatom. Moreover, this pathway is ecologically relevant, being sensitive to sub-micromolar concentrations of inorganic phosphate and a range of environmentally abundant P forms. Notably, we show that diatom recovery from P limitation requires rapid and substantial increases in N assimilation and demonstrate that this process is dependent on P-Ca2+ signaling. P-Ca2+ signaling thus governs the capacity of diatoms to rapidly sense and respond to P resupply, mediating fundamental cross-talk between the vital nutrients P and N and maximizing diatom resource competition in regions of pulsed nutrient supply

    Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution

    Get PDF
    A widespread and complex distribution of vitamin requirements exists over the entire tree of life, with many species having evolved vitamin dependence, both within and between different lineages. Vitamin availability has been proposed to drive selection for vitamin dependence, in a process that links an organism's metabolism to the environment, but this has never been demonstrated directly. Moreover, understanding the physiological processes and evolutionary dynamics that influence metabolic demand for these important micronutrients has significant implications in terms of nutrient acquisition and, in microbial organisms, can affect community composition and metabolic exchange between coexisting species. Here we investigate the origins of vitamin dependence, using an experimental evolution approach with the vitamin B 12 -independent model green alga Chlamydomonas reinhardtii. In fewer than 500 generations of growth in the presence of vitamin B 12, we observe the evolution of a B 12 -dependent clone that rapidly displaces its ancestor. Genetic characterization of this line reveals a type-II Gulliver-related transposable element integrated into the B 12 -independent methionine synthase gene (METE), knocking out gene function and fundamentally altering the physiology of the alga

    Single Tube, High Throughput Cloning of Inverted Repeat Constructs for Double-Stranded RNA Expression

    Get PDF
    BACKGROUND: RNA interference (RNAi) has emerged as a powerful tool for the targeted knockout of genes for functional genomics, system biology studies and drug discovery applications. To meet the requirements for high throughput screening in plants we have developed a new method for the rapid assembly of inverted repeat-containing constructs for the in vivo production of dsRNAs. METHODOLOGY/PRINCIPAL FINDINGS: The procedure that we describe is based on tagging the sense and antisense fragments with unique single-stranded (ss) tails which are then assembled in a single tube Ligase Independent Cloning (LIC) reaction. Since the assembly reaction is based on the annealing of unique complementary single stranded tails which can only assemble in one orientation, greater than ninety percent of the resultant clones contain the desired insert. CONCLUSION/SIGNIFICANCE: Our single-tube reaction provides a highly efficient method for the assembly of inverted repeat constructs for gene suppression applications. The single tube assembly is directional, highly efficient and readily adapted for high throughput applications

    The education effect: higher educational qualifications are robustly associated with beneficial personal and socio-political outcomes

    Get PDF
    Level of education is a predictor of a range of important outcomes, such as political interest and cynicism, social trust, health, well-being, and intergroup attitudes. We address a gap in the literature by analyzing the strength and stability of the education effect associated with this diverse range of outcomes across three surveys covering the period 1986–2011, including novel latent growth analyses of the stability of the education effect within the same individuals over time. Our analyses of the British Social Attitudes Survey, British Household Panel Survey, and International Social Survey Programme indicated that the education effect was robust across these outcomes and relatively stable over time, with higher education levels being associated with higher trust and political interest, better health and well-being, and with less political cynicism and less negative intergroup attitudes. The education effect was strongest when associated with political outcomes and attitudes towards immigrants, whereas it was weakest when associated with health and well-being. Most of the education effect appears to be due to the beneficial consequences of having a university education. Our results demonstrate that this beneficial education effect is also manifested in within-individual changes, with the education effect tending to become stronger as individuals age

    Peer Support Workers in Health:A Qualitative Metasynthesis of Their Experiences

    Get PDF
    Peer support models, where an individual has a specific illness or lifestyle experience and supports others experiencing similar challenges, have frequently been used in different fields of healthcare to successfully engage hard-to-reach groups. Despite recognition of their value, the impact of these roles on the peer has not been systematically assessed. By synthesising the qualitative literature we sought to review such an impact, providing a foundation for designing future clinical peer models.Systematic review and qualitative metasynthesis of studies found in Medline, CINAHL or Scopus documenting peer worker experiences.1,528 papers were found, with 34 meeting the criteria of this study. Findings were synthesised to reveal core constructs of reframing identity through reciprocal relations and the therapeutic use of self, enhancing responsibility.The ability of the Peer Support Worker to actively engage with other marginalised or excluded individuals based on their unique insight into their own experience supports a therapeutic model of care based on appropriately sharing their story. Our findings have key implications for maximising the effectiveness of Peer Support Workers and in contributing their perspective to the development of a therapeutic model of care
    corecore