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ABSTRACT 20 

A widespread and complex distribution of vitamin requirements exists over the entire tree of 21 

life, with many species having evolved vitamin dependence, both within and between 22 

different lineages. Vitamin availability has been proposed to drive selection for vitamin 23 

dependence, in a process that links an organism’s metabolism to the environment, but this has 24 

never been demonstrated directly. Moreover, understanding the physiological processes and 25 

evolutionary dynamics that influence metabolic demand for these important micronutrients 26 

has significant implications in terms of nutrient acquisition, and in microbial organisms, can 27 

affect community composition and metabolic exchange between coexisting species. Here, we 28 

investigate the origins of vitamin dependence, using an experimental evolution approach with 29 

the vitamin B12-independent model green alga Chlamydomonas reinhardtii. In fewer than 500 30 

generations of growth in the presence of vitamin B12, we observe the evolution of a B12-31 

dependent clone that rapidly displaces its ancestor. Genetic characterization of this line 32 

reveals a type-II Gulliver-related transposable element (GR-TE) integrated into the B12-33 

independent methionine synthase gene (METE), knocking out gene function and critically 34 

altering the physiology of the alga.  35 

 36 
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INTRODUCTION 40 

All organisms must balance the cost of maintaining metabolic independence with the risk of 41 

restricting their niche by depending on environmental sources of enzyme co-factors. These 42 

co-factors perform essential metabolic functions, and when supplied externally, are known as 43 

vitamins. Animals obtain vitamins in their diet, and are thus described as vitamin auxotrophs. 44 

Some organisms avoid the need for external sources of vitamins, because they synthesize the 45 

cofactors themselves. However, vitamin biosynthesis can be metabolically expensive, and as 46 

these compounds are required in only trace quantities, out-sourcing production could be 47 

selected for if an exogenous vitamin supply is available. The loss of vitamin synthesis has 48 

happened frequently across eukaryote diversity (Helliwell et al, 2013), suggesting that the 49 

conditions for evolutionary shifts in vitamin requirements commonly occur in space and time. 50 

One well-known example of this is vitamin C auxotrophy, which arose independently in 51 

primates, guinea pigs, teleost fish, and certain bat species as the result of loss of the final 52 

enzyme in the biosynthetic pathway, L-gulonolactone oxidase (Nishikimi et al, 1994; Drouin 53 

et al, 2011). Since the lineages that can no longer synthesize this vitamin have a vitamin C 54 

rich diet, it has been hypothesized that diet may have led to the evolution of this trait (Drouin 55 

et al, 2011).  56 

Vitamin dependence is not however confined to animal taxa (Helliwell et al, 2013).  57 

For instance, the requirement for biotin (vitamin B7) is a variable trait between strains of the 58 

yeast Saccharomyces cerevisiae. Genomic evidence has revealed a partial pathway for 59 

biosynthesis of this vitamin in the strain S. cerevisiae S288c, suggesting the ability to 60 

synthesize this cofactor has been lost recently (Hall and Dietrich, 2007). Among algae - 61 

taxonomically diverse photosynthetic eukaryotes - vitamin auxotrophy is also a highly 62 

variable trait. Approximately 50%, 22% and 5% of species surveyed require vitamin B12 63 

(cobalamin), B1 (thiamine) and B7 (biotin), respectively (Croft et al, 2006), and the 64 
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distribution of requirement does not follow phylogenetic lines. Unlike other B vitamins, 65 

vitamin B12 is synthesised only by prokaryotes (Warren et al, 2002). In aquatic ecosystems, 66 

ambient concentrations of B12 are extremely low (Sanudo-Wilhelmy et al, 2012) and it has 67 

been proposed that availability of this factor may exert significant constraints on the 68 

distribution, taxonomic composition and primary productivity of algal communities (Gobler 69 

et al, 2007; Bertrand et al, 2012a; Sanudo-Wilhelmy et al, 2012). However, the prevalence of 70 

algal vitamin B12 requirers in nature implies that there is a readily available/common niche 71 

for auxotrophic algae to occupy. Current understanding suggests B12 requirers may obtain a 72 

source of vitamin B12 through: i) direct interactions with heterotrophic bacteria (Croft et al, 73 

2005; Wagner-Döbler et al, 2010; Kazamia et al, (2012) and/or ii) uptake from the dissolved 74 

vitamin pool, in patches of elevated microbial activity – i.e. non-specific interactions with 75 

prokaryote producers (Karl et al, 2002; Azam et al, 2007). Based on genome analyses 76 

prokaryotic taxa implicated in cobalamin synthesis include members of the 77 

Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Bacteroidetes (Sañudo-78 

Wilhelmy et al, 2014). A more recent study also revealed a globally significant role for the 79 

Archaea (Thaumarchaeota) in vitamin B12 production in aquatic ecosystems (Doxey et al, 80 

2014).  81 

Insights into the molecular basis underlying the vitamin requirements of algae have 82 

also been gained using available genome sequences. Unlike for other vitamins, where 83 

possession of the biosynthetic pathway means an organism does not require an external 84 

supply of the compound, vitamin B12 independence is conferred by the presence of an 85 

enzyme that does not need a cobalamin cofactor (Croft et al, 2005; Croft et al, 2006). Three 86 

B12-requiring enzymes are known in eukaryotes: i) methylmalonyl-CoA mutase, used for odd 87 

chain-fatty-acid metabolism, ii) type II ribonucleotide reductase involved in deoxyribose 88 

biosynthesis, and iii) methionine synthase (METH), which catalyses the biosynthesis of 89 
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methionine (Marsh, 1999). A B12-independent form of methionine synthase (METE) is found 90 

in land plants and fungi, and these organisms do not require vitamin B12.  A survey of algal 91 

genomes showed that algal B12 independence correlates with the presence of a functional 92 

copy of METE (Croft et al, 2005, Helliwell et al, 2011; Bertrand et al, 2012b). The model 93 

green alga Chlamydomonas reinhardtii does not require vitamin B12 and possesses both 94 

isoforms of methionine synthase, whereas METE has been lost in other closely-related B12-95 

dependent species (Helliwell et al, 2011). 96 

 Determining and testing the selective pressures contributing to the evolution of 97 

vitamin dependence is a key component in understanding the evolution of a species niche and 98 

its biotic interactions with co-occurring species. While comparative analyses can show which 99 

environmental conditions correlate with the evolution of vitamin dependencies, only 100 

experimentation can test definitively whether particular drivers, such as a shift in 101 

diet/environment, are sufficient to cause such major metabolic changes. A reliable and 102 

abundant external source of B12 may lead to the deterioration of METE through relaxed 103 

selection (Helliwell et al, 2011), whereby the negative regulatory effect of B12 on METE 104 

expression could facilitate this process (Helliwell et al, 2013; Helliwell et al, 2014). Here, we 105 

adopt an experimental evolution approach using C. reinhardtii to study the processes shaping 106 

the metabolic demand for vitamin B12. We focus on identifying the genetic changes involved, 107 

as previous work has suggested that the presence/absence of a single gene METE is a 108 

sufficient predictor of B12 auxotrophy in algae (Croft et al, 2005; Helliwell et al, 2011). 109 

Linking environmental conditions to evolutionary changes in basic metabolism in 110 

phytoplankton is vital to understand better ecosystem function and biogeochemical cycling in 111 

dynamic aquatic environments.  112 

113 



   6 
 

MATERIALS AND METHODS 114 

Selection experiment 115 

Selection was carried out in 24-well plates containing 2 mL of TAP medium (Gorman and 116 

Levine, 1965) at 25 ⁰C in continuous light (20 µmol/m2/sec) with shaking (140 rpm). Forty 117 

six independent populations were founded from a single colony of the ancestral line (AL) C. 118 

reinhardtii strain 12, derived from WT strain 137c. Cells were transferred every Monday, 119 

Wednesday and Friday, with growth periods approximately 51, 53, and 64 hours respectively. 120 

Optical density (OD730) was measured every transfer, which determined the subsequent 121 

transfer volume to obtain ~8000 cells/inoculum. As such, cells never exceeded a cell density 122 

of ~3 × 106 cells/mL.  Stock-points were taken after 13, 25, 40, 50, 60, and 70 transfers 123 

respectively, and maintained on 2% TAP agar in 24-well plates in the dark. 124 

Pure culture growth rates 125 

Pure culture growth assays were measured in 24 well plates in the presence of vitamin B12 126 

(1000 ng/L) in the same growth chamber and conditions as used for the selection experiment 127 

(described above). Ten independent S-type (B12-dependent), H-type (B12-independent), and 128 

R-type (B12-independent; derived from S-type clones following loss of the transposon from 129 

METE) clones from population E8+ at transfer T70, alongside  10  ancestral line (AL) clones 130 

were isolated from single colonies grown on 2% TAP agar, and allowed to recover for 3-6 131 

days. Prior to the growth assay cultures were acclimated to the growth assay conditions (with 132 

1000 ng/L B12 supplementation) for 4 days, then diluted to a cell density of 4000 cells/mL 133 

(i.e. an 8000 cell inoculum). The number of cells/mL was subsequently measured every 12 134 

hours over a 96 hour time period using the Duel Threshold Beckman Coulter (Z2) Particle 135 

Counter and Size Analyser with a 70 µm diameter aperture, counting between 3 µm (Tl) and 136 

9 µm (Tu). Values given are means of 10 independent replicates. 137 
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Molecular methods 138 

DNA/RNA were extracted, and PCR/RT-PCR experiments were performed as described by 139 

(Helliwell et al, 2011) (Supplementary Table S1).  140 

Southern blotting 141 

Extracted DNA was digested with NaeI and BamHI (NEB, UK). A total of 1.5 µg was loaded 142 

and separated by agarose-gel electrophoresis, and transferred to Hybond-N+ (GE-Healthcare) 143 

membranes. A 339 bp probe (Supplementary Table S1) was amplified using PCR, and 144 

labelled with [α-32P]dCTP using Ready-to-Go DNA labelling beads (GE-Healthcare). The 145 

blots were pre-hybridized overnight at 65°C in Church buffer (Church and Gilbert, 1984). 146 

The probe was denatured by 10 min boiling, and added to the hybridization tubes. 147 

Hybridization was carried out overnight at 65°C. Filters were washed at 65°C in increasingly 148 

stringent buffers (2 × sodium chloride/sodium citrate (SSC), 0.1% SDS to 0.2× SSC, 0.1% 149 

SDS) until counts were ~1000 cpm.  150 

Western blotting 151 

Total protein was extracted, and Western blot experiments performed as described by 152 

(Helliwell et al, 2014). To verify adequate transfer and equal loading, the membrane was 153 

stained in Ponceau stain (0.2% [w/v] Ponceau-S, 3% [w/v] TCA) (Romero-Calvo et al, 2010). 154 

 155 

RESULTS  156 

Rapid evolution of a vitamin B12-depenndent line of C. reinhardtii 157 

To investigate whether an exogenous supply of vitamin B12 could lead to auxotrophy, we 158 

established an evolution experiment where 46 independent populations of the fast growing 159 

green alga, Chlamydomonas reinhardtii, were founded from a single clone (the ancestral line, 160 
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AL). Half the populations were grown without B12 on TAP medium (Methods), and the other 161 

half with 1000 ng/L vitamin B12, an amount that exceeds the growth requirements of B12-162 

requiring algae (Croft et al, 2005). The populations were sub-cultured into fresh medium at 163 

regular intervals, with the maximum cell density reaching ~3 × 106 cells/mL. Populations 164 

were scored for B12 dependence every 10 transfers (T). At T60 (~600 generations) one of the 165 

populations supplemented with B12 (evolved line, E8+) had impaired ability to grow without 166 

the vitamin. When E8+ cells were plated on solid medium so that colonies could grow from 167 

single cells, in the absence of B12 two colony morphologies were evident: healthy (H-type) 168 

normal-sized colonies, and smaller (S-type) colonies impaired in growth (Figure 1a); on B12-169 

containing medium all colonies appeared normal-sized. Growth assays in liquid culture 170 

revealed cells isolated from H-type colonies were vitamin B12 independent, whilst S-type 171 

cells were dependent on the vitamin for growth in liquid culture during a 72 hour cultivation 172 

window (Figure 1b). We found no evidence of S-type cells in any of the other replicate 173 

populations, when cells were plated out on TAP media in the absence of B12.  174 

Selective sweep of the novel B12-dependent clone 175 

Stocks of independent populations were collected throughout the experiment at T13, 25, 40, 176 

50, 60, 70, and stored on solid medium. To identify the point at which the S-type cells arose 177 

we grew each stock-point for the E8+ population in liquid medium with or without B12. 178 

Growth in the presence of B12 was comparable between stocks (Figure 1c and d). In contrast, 179 

on medium without the vitamin, the B12-dependent phenotype was more pronounced in the 180 

E8+ population with increasing transfers (Figure 1c and d). Plate assays to quantify the 181 

percentage of cells giving rise to S-type colonies on medium without B12 showed S-type cells 182 

increased in frequency within the population from 1.6% to 99.7% over 30 transfers (T40 to 183 

T70) (Figure 1e). To define the level of B12 sufficient to produce this response, a ‘replay’ 184 

experiment was conducted. We returned to stock-point T50 (where S-type cells comprised 185 
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<30% of the population), and repeated the selective regime, at a range of concentrations of 186 

B12. After 10 transfers with 200 ng/L (0.2 µM) and above, the B12-dependent cells rose in 187 

frequency within the population (Figure 1f). Indeed, a B12-dose response confirms that S-type 188 

cells can grow unimpaired at this concentration (Supplementary Figure S1).  189 

A transposition event underlies the B12-dependent phenotype 190 

To characterize the genetic cause of the novel B12-dependent phenotype, we conducted a PCR 191 

based analysis of the METE gene in S-type and H-type clones. This approach revealed a size 192 

polymorphism between the different clone types, in the region corresponding to the 9th exon 193 

of the gene (Figure 2a). Sequencing and BLAST analysis revealed that a 238 bp class-II 194 

(‘cut-and-paste’) Gulliver-related transposable element (GR-TE) had integrated into METE in 195 

S-type cells (Figure 2a, Supplementary Figure S2a and b). GR-TEs have been described 196 

previously in C. reinhardtii (Kim et al, 2005; 2006). Such elements belong to a family of 197 

>200 small, non-autonomous TEs, and feature characteristic 15 bp imperfect terminal-198 

inverted repeats (TIRs) that are also found in a larger transposon (~12 kb) known as Gulliver, 199 

which is thought to activate mobilization of the GR-TE elements (Ferris, 1989; Kim et al, 200 

2006). The transposition event described here causes an 8 bp duplication of the target-site in 201 

the gene (Figure 2a), characteristic of Gulliver elements (Ferris, 1989). Insertion of the GR-202 

TE was into a highly conserved region of the protein, and resulted in an in-frame stop codon 203 

that would be likely to cause premature termination of translation (Gonzalez et al, 1992; 204 

Pejchal and Ludwig, 2005) (Supplementary Figure S3). Indeed, western blot analysis using a 205 

polyclonal antibody against C. reinhardtii METE (Schneider et al, 2008) detected a band of 206 

86.5 kDa in AL cells, but no cross-reacting polypeptide in an S-type clone from the E8+ 207 

population (Figure 2b). Nonetheless, the METE transcript remained expressed (at 0 and 20 208 

ng/L B12), and repressed by B12 (1000 ng/L), as is characteristic for WT C. reinhardtii METE 209 

(Figure 2c) (Croft et al, 2005; Helliwell et al, 2011; Helliwell et al, 2014).  210 
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A Southern blot analysis of genomic DNA prepared from each of the stock-points was 211 

carried out, using a probe (338 bp) to an internal region of METE (Figure 2d). This probe 212 

hybridized to a band of the expected size (1430 bp) in the AL, and in all but the last stock-213 

points (Figure 2e). However, a second, larger band appears at T50 (~500 generations), which 214 

corresponds to the B12-dependent phenotype, likely to be the arrival of the TE. Both the large 215 

and small METE bands are evident between T50-T60, until T70, where only the large band is 216 

detectable. We interpret these data to confirm that a B12-dependent phenotype of C. 217 

reinhardtii arose between T40-T50, through transposition of a GR-TE into METE, correlating 218 

with growth experiments (Figure 1d and e). These B12-dependent cells remained in co-culture 219 

with their B12-independent predecessors for a further 20 transfers (<200 generations), until 220 

eventually the B12-dependent clones dominated the population (T70, <700 generations). 221 

Samples prepared from individual S and H-type clones (Figure1b) show only the larger and 222 

smaller products, respectively (Figure 2e). 223 

Phenotypic plasticity in response to exogenous levels of vitamin B12  224 

Reversion of mutant phenotypes by transposon excision is well documented, especially in 225 

conditions of physiological stress (McClintock, 1948; Maumus et al, 2009). We sought to 226 

investigate the occurrence of reversion in the evolved E8+ S-type cells in B12-deplete 227 

conditions. Eight days after plating on solid medium, S-type colonies were seen on plates 228 

lacking B12 (Supplementary Figure S4). However, after a further three days, darker bodies of 229 

cells appeared within the S-type colonies on the plates without B12 (Figure 3a, Supplementary 230 

Figure S4). Since they grew after colonies on the control plate with B12 were already visible, 231 

we reasoned that they were likely to be revertants. Sequencing revealed complete excision of 232 

the transposon from the METE gene in such cells. We also screened 11 S-type colonies that 233 

showed no evidence of phenotypic reversion after 15 days on B12-deplete medium 234 

(Supplementary Figure S4). All 11 clones were confirmed to be vitamin B12 dependent, and 235 
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using PCR with primers spanning the GR-TE were also shown to have GR-TE (Figure 3b).  236 

However, one B12-dependent clone (clone #7) generated a PCR product with the size 237 

expected for WT METE (Figure 3b). Sequencing revealed the GR-TE was absent except for a 238 

9 bp footprint sequence (CACCATGCT), the latter 6 bp of which is a remnant of the METE 239 

repeat (Figure 2a, Figure 3c). This in-frame insertion leads to 3 extra amino acids that disrupt 240 

a conserved region of the METE gene (Supplementary Figure S3) resulting in a stable vitamin 241 

B12-dependent mutant.  242 

Comparison of growth rates of S, H, R and AL clones in pure culture 243 

The selective sweep, which we observed in several independent experiments (including 244 

different B12 treatments), suggests that S-type cells have a growth advantage compared to 245 

their B12-independent counterparts in B12-replete conditions. Theoretical calculations (Table 246 

1) illustrate that only a very minor increase in specific growth rate (~4%) is required to cause 247 

the rise from 30 to 71% on hypothetical ‘strain B’ within 10 transfers, similar to the 248 

population shifts we observe over this timescale with S-type cells in the replay experiment 249 

(Figure 1f). To investigate whether a growth advantage is detectable, a growth assay with 250 

pure cultures of 10 independently isolated S-type, H-type and AL clones was carried out. We 251 

also included within this analysis 10 independent R-type clones (i.e. revertants derived from 252 

10 different S-type colonies, and thus representing independent reversion events) to 253 

investigate the link between fitness and METE presence/absence. We detected a ~9% higher 254 

maximal growth rate (h-1) of S-type compared to H-type clones (Figure 4a and b), however 255 

the difference was not statistically different using a Student’s t test with a p value of ≤ 0.05. 256 

We did however observe a statistical difference in growth rate between S- and R- type cells 257 

(two-tailed Student’s t test P ≤ 0.05, n=10). The mean growth rates for H- and R- type cells 258 

were virtually identical (0.146 ± 0.008 s.e.m. and 0.144 ± 0.006). Moreover, all evolved lines 259 
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(S-, H- and R-type) exhibited a faster maximal growth rate under the selective regime 260 

compared to the AL (P ≤ 0.001, n=10). 261 

Vitamin B12-dependent growth is rescued by B12-synthesizing bacteria 262 

Vitamin B12 biosynthesis is confined to prokaryotes (Croft et al, 2005). The irreversible loss 263 

of METE, therefore, not only forces the evolution of vitamin auxotrophy, but also an absolute 264 

dependency on a bacterial supply of the vitamin. Algal acquisition of vitamin B12 through 265 

direct mutualism with bacteria has been demonstrated previously by our laboratory (Kazamia 266 

et al, 2012), in which Lobomonas rostrata, a known B12 auxotroph, and a bacterial partner, 267 

Mesorhizobium loti, can grow stably for an indefinite period in co-culture in the absence of 268 

vitamin B12 or fixed carbon. This system has also been described mathematically (Grant et al, 269 

2014). To test if a similar exchange is able to support the growth of the newly evolved line 270 

we set up co-cultures of the non-stable S-type line with one of three B12-synthesising 271 

rhizobial species of bacteria (M. loti (strain MAFF 303099) Rhizobium leguminosarum 272 

(RL3841) and Sinorhizobium meliloti (RM 1021)) in TAP medium lacking B12. Using 273 

chlorophyll concentration as a proxy for algal growth, we found that for the first 5 days there 274 

was no growth of the alga, except when exogenous B12 was present in the medium (Figure 275 

5a). However, after five days all inocula grew well, even the control with no B12/bacterial 276 

supplementation. We interpreted that this was a result of B12-independent revertants rising to 277 

dominance within the population. Using PCR with primers spanning the GR-TE a larger 278 

product in the +B12 treatment was identified (Figure 5b) indicating the presence of the GR-279 

TE in the METE gene. However, for the –B12, and M. loti treatments the product was smaller, 280 

confirming excision of the transposon in these cultures. Interestingly, in the other co-cultures 281 

two products were amplified, revealing a mixed population of revertant and non-revertant 282 

clones (Figure 5b). The proportion of the two bands varied depending on which bacterial 283 

species was present, suggesting that different bacteria can support the alga to different levels, 284 
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and thus may dictate the frequency of B12-dependent vs. independent algal clones within a 285 

population. We repeated this experiment with the stable B12-requiring clone #7. All three 286 

bacteria were able to support the mutant in the absence of B12, with no growth observed in the 287 

–B12 treatment (Figure 5c). Moreover, the algal-bacterial co-culture reached a lower carrying 288 

capacity compared to the +B12 treatment indicating a degree of regulation, as seen with the L. 289 

rostrata/M. loti co-culture (Kazamia et al, 2012; Grant et al, 2014). A similar result was 290 

observed in medium lacking an organic carbon source, so bacterial growth is in turn 291 

dependant on algal photosynthate (Figure S5). 292 

 293 

DISCUSSION 294 

The evolution of vitamin dependence has been a recurrent event across the tree of life, with 295 

important implications for the basic physiology and ecology of all organisms. The processes 296 

underlying how species become dependent on these organic micronutrients are inherently 297 

difficult to test empirically. In this study, we explored directly whether a key factor 298 

hypothesized to drive the evolution of vitamin auxotrophy, was able to do so. By adopting an 299 

experimental evolution approach we found direct support for the hypothesis that an 300 

exogenous supply of vitamin B12 can lead to the evolution of B12-dependence (Figure 1). 301 

Additionally, we were able to define in detail the genetic mechanism (transposition), 302 

population dynamics (including phenotypic reversibility), and the environmental context in 303 

which this evolutionary event occurred. By establishing the genetic basis for the change in 304 

phenotype, we were able to pinpoint the precise timing of the change in genotype, and 305 

characterise temporally the rise to dominance of the novel clone within the population.  306 

Experimental evolution has been used widely as a powerful approach for 307 

understanding microbial evolution – exploiting the fast generation time and large population 308 

size of these organisms (Elena and Lenski, 2003). It allows fundamental evolutionary 309 
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principles to be tested directly, and with greater rigour than alternative approaches, such as 310 

specific genome manipulation. Moreover, this technique allows detection of subtle fitness 311 

differences that would otherwise be overlooked via standard growth assays (Collins, 2011). 312 

C. reinhardtii has the lowest spontaneous mutation rate described for any eukaryote (Ness et 313 

al, 2012), and yet previous artificial selection experiments with C. reinhardtii have observed 314 

major evolutionary novelties (likely encompassing multiple gene alterations) such as loss of 315 

regulation in the carbon concentrating mechanism (Collins and Bell, 2004) and evolution of a 316 

two-stage life cycle (Ratcliff et al, 2013), after 1000 and 312 generations, respectively. 317 

Nonetheless, the underlying genetic components of these phenotypes were not determined, so 318 

the contributions of epigenetics, point mutations, transposition events, and other genetic 319 

changes to adaptive phenotypes remain unknown. To our knowledge this is the first study 320 

characterising transposition in an experimentally evolved algal population. Indeed, although 321 

TEs have been studied extensively in animals, plants and fungi, little is known about their 322 

significance in algal evolution. Transposons have, however, been identified in the genomes of 323 

several algal species (Armbrust et al, 2004; Bowler et al, 2008; Cock et al, 2010; Read et al, 324 

2014), and nutrient stress (nitrate limitation) activated transposition has been observed in the 325 

marine diatom P. tricornutum (Maumus et al, 2009), which has also been observed with our 326 

system. Moreover, differential insertion patterns amongst natural isolates of diatom species 327 

from different geographic locations have been observed (Maumus et al, 2009). Together these 328 

findings suggest that TEs may play an important role in naturally evolving algal populations. 329 

An exciting area of future research will be to elucidate the impact of TEs on genome 330 

evolution of individual members of complex microbial communities, in particular 331 

understanding the frequency of transposition events and whether certain gene classes are 332 

more prone to disruption. 333 



   15 
 

The fact that the METE gene loss in E8+ that we observed was due to transposition 334 

(Figure 2) has further significance, since the re-excision of the transposon allows reversion to 335 

B12 independence in response to the absence of environmental B12 (Figure 3). This temporary 336 

‘get out of jail free card’ could thus facilitate evolutionary escape from a B12-dependent 337 

lifestyle before METE further deteriorates (Helliwell et al, 2011). If similar processes 338 

happened in other algal lineages, this may explain the differences in B12 requirements 339 

observed between closely-related strains by allowing for rapid and reversible evolution in 340 

environments where levels of B12 may fluctuate. The observed selective sweep of the novel 341 

evolved line E8+ within the population shows that this clone has a selective advantage 342 

compared to its ancestor. However, we must consider the possibility that genetic changes 343 

other than that to the METE gene have contributed to this fitness advantage. Whole genome 344 

analyses will be important in the future to pinpoint whether/what other genome modifications 345 

may have occurred. Nonetheless, as multiple independent isolates exhibiting reversion of the 346 

METE transposition event have a reduced growth rate relative to S-type cells (Figure 4), the 347 

selective advantage appears to be associated specifically with the loss of METE. 348 

 Vitamin B12 auxotrophy is found in 155 species of over 300 species surveyed (Croft et al, 349 

2005; Tang et al, 2010), and evidence suggests that B12-dependent metabolism is beneficial in 350 

certain scenarios, if B12 is readily available. For instance METH has a catalytic efficiency 100 351 

times greater (Gonzalez et al, 1992), and exhibits enhanced thermal tolerance, in comparison 352 

to METE (Xie et al, 2013). Moreover, theoretical calculations estimate that utilisation of 353 

METH in P. tricornutum is more resource efficient than B12-independent metabolism, as use 354 

of METE was calculated to require 30± 9 times more nitrogen and 42± 5 times more zinc 355 

than METH (Bertrand et al. 2013). B12--dependent growth that favours the use if METH 356 

could therefore offer an advantage when Zn/N are limited. However, as METE expression is 357 

repressed in the presence of B12 (Croft et al, 2005; Helliwell et al, 2011; Bertrand et al, 2012; 358 



   16 
 

Bertrand et al, 2013; Helliwell et al, 2014) how fitness maybe conferred from inactivating a 359 

gene that is already switched off remains unclear. One possibility is that in habitats where 360 

levels of vitamin B12 fluctuate, algae that have both forms of the enzyme may benefit from 361 

maintaining a low level of the METE protein, to facilitate rapid response to environmental 362 

fluctuations of B12 levels. Indeed, some METE transcript/ protein can be detected under B12 363 

replete conditions (Helliwell et al, 2014; Xie et al, 2014). However, since the levels are so 364 

low, it is unclear whether complete loss of METE would confer a metabolic saving. It is 365 

possible that METE function, even at low protein abundance, may exert an as yet unidentified 366 

energetic cost beyond simply the composition of the protein. 367 

Whatever the explanation for the observed selective advantage of the S-type line, this 368 

study validates the hypothesis that B12 availability in the environment can lead to the 369 

taxonomically variable presence and absence of METE. In this context it is relevant to 370 

consider levels of B12 occurring in natural aquatic environments. Recent measurements have 371 

revealed vitamin B12 depletion in large areas of coastal ocean and the vitamin is typically 372 

absent from the euphotic zone (Sanudo-Wilhelmy et al, 2012). Moreover, levels of B12 are 373 

reportedly less than 10 ng/L (~10 pM) in some freshwater habitats (Kurata, 1986). However, 374 

since this molecule will likely be rapidly consumed as it becomes available within the water 375 

column, measurements of standing stock concentrations alone might not accurately reflect 376 

B12 availability. Moreover, vitamin levels will vary to some extent on the microscale, with 377 

discrete vitamin patches arising due to localised microbial activity, and/or the presence of 378 

particulate matter (Azam et al, 2007; Stocker et al, 2012; Yawata et al, 2014). Interestingly, a 379 

recent study found that microscale nutrient heterogeneity could drive ecological 380 

differentiation in nutrient acquisition strategies in marine bacteria (Yawata et al, 2014). This 381 

raises interesting eco-evolutionary considerations with regards to algal vitamin acquisition 382 

strategies and METE presence/absence. A comprehensive comparison of the geographic 383 
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distribution of vitamin B12 auxotrophs versus non-requirers in aquatic environments in 384 

relation to B12 levels has not yet been attempted. However, it is known that B12 auxotrophs 385 

such as the picoeukaryote Ostreococcus tauri are represented in oligotrophic environments, 386 

where ambient concentrations of vitamins are extremely low (Sanudo-Wilhelmy et al, 2012). 387 

Evolutionary adaptations enabling B12 auxotrophs to be successful competitors in B12 388 

deprived regions could include becoming specialised at nutrient patch exploitation - being 389 

able to migrate rapidly to new nutrient sources upon a temporal change in the nutrient 390 

landscape for instance. Or alternatively these organisms may meet their vitamin demands 391 

though the establishment and maintenance of direct symbiotic interactions with other 392 

microbes (Croft et al, 2005; Wagner-Döbler et al, 2010; Kazamia et al, 2012). Since algae in 393 

possession of both METE and METH may use B12 if it is available, loss of METE could be a 394 

plausible mechanism to cause sympatric populations to embark on different evolutionary 395 

trajectories, driving the evolution of symbiotic interactions and/or other specialist nutrient 396 

acquisition strategies. A challenging question that remains to be answered is to what extent 397 

these different strategies are represented in the natural world.   398 

  399 
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FIGURES LEGENDS 532 

Figure 1. The evolution of vitamin B12 dependence in C. reinhardtii. (a) E8+ cells plated 533 

onto solid medium –B12 give rise to two colony morphologies: healthy (H-type) colonies, and 534 

smaller (S-type) colonies (as visualised under a dissecting microscope), scale bar: 1 mm. (b) 535 

Growth of four independent H- and S-type colonies plus (1000 ng/L) and minus B12 after 72 536 

hours (mean ± s. e. m) n=3. Mean OD730 values for H- and S- type clones at this time point 537 

were: 0.78 ± 0.08 s.e.m. (+B12), 0.78± 0.04 (-B12), and 0.64 ± 0.009 (+B12), 0.04± 0.02 (-B12) 538 

respectively. (c) OD730 of stock-points cultures on liquid medium with (1000 ng/L; grey) and 539 

without B12 after 72 hours (mean ± s. e. m) n=3 and, (d) Maximal growth rate (h-1) of stock-540 

points cultures on liquid medium with (1000 ng/L; grey) and without B12 as calculated from c 541 

(mean ± s. e. m) n=3. (e). Percentage of S-type vs. H-type colonies within the population at 542 

independent stock-points (mean ± s. e. m) n=3. (f)  Percentage of S- (red) and H-type 543 

colonies (blue) after replaying selection from T50 (where S-type cells represent <30%  of the 544 

population, broken black line) for 10 transfers at different concentrations of B12 (mean ± s. e. 545 

m) n=3. 546 

Figure 2. Identification of a Gulliver-related transposable element (GR-TE) in the 547 

METE gene of E8+ S-type cells. (a) PCR on genomic DNA of four independent S and H-548 

type clones using primer pair F2b/R3b (amplifying a 1 kb region between 4.4-5.4 kb from the 549 

start codon) reveals an unexpectedly large product for S-type clones (expected product size 550 

for WT METE: 1003 bp). A BLAST search using the sequence from the S-type product 551 

revealed a strong (E-value: 8e-67) hit for C. reinhardtii METE (Supplementary Figure S2a). 552 

Another hit (E-value: 2e-87) 238 bp in size was identified as a class-II Gulliver-related 553 

transposable element (GR-TE) (Kim et al, 2005; Kim et al, 2006) (Supplementary Figure 554 

S2b). The schematic diagram shows an alignment between C. reinhardtii WT METE in this 555 

region compared to the ‘S-type’ product sequence. A target-site duplication of METE (grey 556 
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underline) flanks a 15-bp terminal-inverted-repeat (boxed). (b) Western blot analysis on total 557 

protein of E8+ and AL cells using a polyclonal antibody against C. reinhardtii METE (~86.5 558 

kDa) (Schneider et al, 2008) (L: Ladder). To verify adequate transfer and equal loading, the 559 

membrane was stained in Ponceau stain (Ponceau S) (c) RT-PCR reveals that METE is 560 

expressed and regulated by B12 in E8+. Expected products using primers Transcript_F1/R1: 561 

AL gDNA: 902 bp (+ 246 with TE + 8 bp METE repeat, i.e. 1148 bp), cDNA: 371 bp (+ 246 562 

bp i.e. 617 bp).  (d) Schematic diagram of Southern blot strategy (e) Southern blot analysis 563 

using the METE probe (probe 1) on genomic samples for stock-points, and independent S- 564 

and H-type clones.  565 

Figure 3. Characterisation of mutant phenotype revertants and isolation of a stable 566 

METE insertion mutant (a) A non-reverting colony (i) alongside three independent 567 

revertant colonies ii-iv visualised under a dissecting microscope, after 11 days on solid 568 

medium –B12. (b) PCR screen for the presence of GR-TE insertion in METE gene of clones 569 

using primers spanning GR-TE insertion site (METE_revert F1/R1). Clone no. 7 is vitamin 570 

B12-dependent, yet lacks the GR-TE (expected product sizes: WT METE- 913 base, and 571 

METE with GR-TE insertion 913 + 246 = 1159 bp). Sequencing revealed a 9 base footprint 572 

(CACCATGCT) in this clone (c) the latter 6 bp of which (underlined grey) is a remnant of 573 

the METE repeat.  574 

Figure 4. Characterisation of growth of  S-type, H-type, R-type and AL cells a. Growth 575 

over time of S-type, H-type, R-type and AL clones in the presence of vitamin B12 (1000 ng/L) 576 

(mean ± s. e. m) n=10. c. Mean maximal growth rate (h-1) of S-type, H-type, R-type and AL 577 

clones as calculated from a. *P ≤ 0.05, **P ≤ 0.001 compared with the S-type clones (two-578 

tailed Student’s t test) (mean ± s. e. m) n=10. 579 

 580 
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Figure 5. Vitamin B12 dependence is rescued by three B12-synthesising rhizobial species 581 

of bacteria. (a) Growth of S-type mutant in different B12 regimes including: i. + B12 (1000 582 

ng/L), ii. -B12, iii. Mesorhizobium loti, iv. Sinorhizobium meliloti and v. Rhizobium 583 

leguminosarum. The latter three treatments were grown in the absence of B12 in TAP medium 584 

(mean ± s. e. m) n=3. (b) PCR with METE primers spanning the GR-TE from DNA extracted 585 

from the different conditions at day 7. (c) Growth of stable-METE-insertion mutant clone #7 586 

in B12 regimes described in (a). This experiment was carried out in TAP medium (mean ± s. 587 

e. m) n=3. 588 













   1 
 

Table 1. Theoretical calculation of population shifts between two algal strains in co-culture 1 

after 24 days (10 transfers), assuming initial populations of 70% A : 30% B. The calculations 2 

assume a constant specific growth rate (µ) of 0.075h-1 in Strain A and are designed to mimic 3 

the conditions of the ‘selective sweep’ experiment described in Figure 1f. The data 4 

demonstrate that only a minimal increase in specific growth rate in Strain B is required to 5 

observe a dramatic shift in the proportions of the respective populations over 24 days. 6 

Strain A µ (h-1) Strain B µ (h-1) Strain B divisions/day Strain B % population (24 d) 

0.075 0.075 2.60 30 

0.075 0.076 2.63 44 

0.075 0.077 2.67 58 

0.075 0.078 2.70 71 

 7 
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