34 research outputs found

    Electrostatic Modulation of the Electronic Properties of Dirac Semimetal Na3Bi

    Full text link
    Large-area thin films of topological Dirac semimetal Na3_3Bi are grown on amorphous SiO2_2:Si substrates to realise a field-effect transistor with the doped Si acting as back gate. As-grown films show charge carrier mobilities exceeding 7,000 cm2^2/Vs and carrier densities below 3 ×\times 1018^{18} cm3^{-3}, comparable to the best thin-film Na3_3Bi. An ambipolar field effect and minimum conductivity are observed, characteristic of Dirac electronic systems. The results are quantitatively understood within a model of disorder-induced charge inhomogeneity in topological Dirac semimetals. Due to the inverted band structure, the hole mobility is significantly larger than the electron mobility in Na3_3Bi, and when present, these holes dominate the transport properties.Comment: 5 pages, 4 figures; minor corrections and revisions for readabilit

    Gate control of Mott metal-insulator transition in a 2D metal-organic framework

    Full text link
    Strong electron-electron Coulomb interactions in materials can lead to a vast range of exotic many-body quantum phenomena, including Mott metal-insulator transitions, magnetic order, quantum spin liquids, and unconventional superconductivity. These many-body phases are strongly dependent on band occupation and can hence be controlled via the chemical potential. Flat electronic bands in two-dimensional (2D) and layered materials such as the kagome lattice, enhance strong electronic correlations. Although theoretically predicted, correlated-electron phases in monolayer 2D metal-organic frameworks (MOFs) - which benefit from efficient synthesis protocols and tunable properties - with a kagome structure have not yet been realised experimentally. Here, we synthesise a 2D kagome MOF comprised of 9,10-dicyanoanthracene molecules and copper atoms on an atomically thin insulator, monolayer hexagonal boron nitride (hBN) on Cu(111). Scanning tunnelling microscopy (STM) and spectroscopy reveal an electronic energy gap of ~200 meV in this MOF, consistent with dynamical mean-field theory predictions of a Mott insulating phase. By tuning the electron population of kagome bands, via either template-induced (via local work function variations of the hBN/Cu(111) substrate) or tip-induced (via the STM probe) gating, we are able to induce Mott metal-insulator transitions in the MOF. These findings pave the way for devices and technologies based on 2D MOFs and on electrostatic control of many-body quantum phases therein.Comment: 19 pages, 4 figure

    Direct observation of narrow electronic energy band formation in 2D molecular self-assembly

    Get PDF
    Surface-supported molecular overlayers have demonstrated versatility as platforms for fundamental research and a broad range of applications, from atomic-scale quantum phenomena to potential for electronic, optoelectronic and catalytic technologies. Here, we report a structural and electronic characterisation of self-assembled magnesium phthalocyanine (MgPc) mono and bilayers on the Ag(100) surface, via low-temperature scanning tunneling microscopy and spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), density functional theory (DFT) and tight-binding (TB) modeling. These crystalline close-packed molecular overlayers consist of a square lattice with a basis composed of a single, flat-adsorbed MgPc molecule. Remarkably, ARPES measurements at room temperature on the monolayer reveal a momentum-resolved, two-dimensional (2D) electronic energy band, 1.27 eV below the Fermi level, with a width of ∼20 meV. This 2D band results from in-plane hybridization of highest occupied molecular orbitals of adjacent, weakly interacting MgPc's, consistent with our TB model and with DFT-derived nearest-neighbor hopping energies. This work opens the door to quantitative characterisation – as well as control and harnessing – of subtle electronic interactions between molecules in functional organic nanofilms

    Observation of Effective Pseudospin Scattering in ZrSiS

    Full text link
    3D Dirac semimetals are an emerging class of materials that possess topological electronic states with a Dirac dispersion in their bulk. In nodal-line Dirac semimetals, the conductance and valence bands connect along a closed path in momentum space, leading to the prediction of pseudospin vortex rings and pseudospin skyrmions. Here, we use Fourier transform scanning tunneling spectroscopy (FT-STS) at 4.5 K to resolve quasiparticle interference (QPI) patterns at single defect centers on the surface of the line nodal semimetal zirconium silicon sulfide (ZrSiS). Our QPI measurements show pseudospin conservation at energies close to the line node. In addition, we determine the Fermi velocity to be vF=2.65±0.10\hbar v_F = 2.65 \pm 0.10 eV {\AA} in the {\Gamma}-M direction ~300 meV above the Fermi energy EFE_F, and the line node to be ~140 meV above EFE_F. More importantly, we find that certain scatterers can introduce energy-dependent non-preservation of pseudospins, giving rise to effective scattering between states with opposite valley pseudospin deep inside valence and conduction bands. Further investigations of quasiparticle interference at the atomic level will aid defect engineering at the synthesis level, needed for the development of lower-power electronics via dissipationless electronic transport in the future

    Significance of nuclear quantum effects in hydrogen bonded molecular chains

    Full text link
    In hydrogen bonded systems, nuclear quantum effects such as zero-point motion and tunneling can significantly affect their material properties through underlying physical and chemical processes. Presently, direct observation of the influence of nuclear quantum effects on the strength of hydrogen bonds with resulting structural and electronic implications remains elusive, leaving opportunities for deeper understanding to harness their fascinating properties. We studied hydrogen-bonded one-dimensional quinonediimine molecular networks which may adopt two isomeric electronic configurations via proton transfer. Herein, we demonstrate that concerted proton transfer promotes a delocalization of {\pi}-electrons along the molecular chain, which enhances the cohesive energy between molecular units, increasing the mechanical stability of the chain and giving rise to new electronic in-gap states localized at the ends. These findings demonstrate the identification of a new class of isomeric hydrogen bonded molecular systems where nuclear quantum effects play a dominant role in establishing their chemical and physical properties. We anticipate that this work will open new research directions towards the control of mechanical and electronic properties of low-dimensional molecular materials via concerted proton tunneling

    Electronic bandstructure of in-plane ferroelectric van der Waals βIn2Se3\beta '-In_{2}Se_{3}

    Full text link
    Layered indium selenides (In2Se3In_{2}Se_{3}) have recently been discovered to host robust out-of-plane and in-plane ferroelectricity in the α\alpha and β\beta' phases, respectively. In this work, we utilise angle-resolved photoelectron spectroscopy to directly measure the electronic bandstructure of βIn2Se3\beta '-In_{2}Se_{3}, and compare to hybrid density functional theory (DFT) calculations. In agreement with DFT, we find the band structure is highly two-dimensional, with negligible dispersion along the c-axis. Due to n-type doping we are able to observe the conduction band minima, and directly measure the minimum indirect (0.97 eV) and direct (1.46 eV) bandgaps. We find the Fermi surface in the conduction band is characterized by anisotropic electron pockets with sharp in-plane dispersion about the M\overline{M} points, yielding effective masses of 0.21 m0m_{0} along KM\overline{KM} and 0.33 m0m_{0} along ΓM\overline{\Gamma M}. The measured band structure is well supported by hybrid density functional theory calculations. The highly two-dimensional (2D) bandstructure with moderate bandgap and small effective mass suggest that βIn2Se3\beta'-In_{2}Se_{3} is a potentially useful new van der Waals semiconductor. This together with its ferroelectricity makes it a viable material for high-mobility ferroelectric-photovoltaic devices, with applications in non-volatile memory switching and renewable energy technologies.Comment: 19 pages, 4 + 1 figures; typos corrected;added references; updated figures & discussion to reflect changes in mode

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    ambipolar Na3Bi raw data and analysis scripts

    No full text
    transport measurements of Na_3Bi thin films grown on SiO_2<div><br></div><div>raw data and scripted analysis/ figure creation using python/ scipy/ matplotlib in support of the written manuscript</div
    corecore