Gate control of Mott metal-insulator transition in a 2D metal-organic framework

Abstract

Strong electron-electron Coulomb interactions in materials can lead to a vast range of exotic many-body quantum phenomena, including Mott metal-insulator transitions, magnetic order, quantum spin liquids, and unconventional superconductivity. These many-body phases are strongly dependent on band occupation and can hence be controlled via the chemical potential. Flat electronic bands in two-dimensional (2D) and layered materials such as the kagome lattice, enhance strong electronic correlations. Although theoretically predicted, correlated-electron phases in monolayer 2D metal-organic frameworks (MOFs) - which benefit from efficient synthesis protocols and tunable properties - with a kagome structure have not yet been realised experimentally. Here, we synthesise a 2D kagome MOF comprised of 9,10-dicyanoanthracene molecules and copper atoms on an atomically thin insulator, monolayer hexagonal boron nitride (hBN) on Cu(111). Scanning tunnelling microscopy (STM) and spectroscopy reveal an electronic energy gap of ~200 meV in this MOF, consistent with dynamical mean-field theory predictions of a Mott insulating phase. By tuning the electron population of kagome bands, via either template-induced (via local work function variations of the hBN/Cu(111) substrate) or tip-induced (via the STM probe) gating, we are able to induce Mott metal-insulator transitions in the MOF. These findings pave the way for devices and technologies based on 2D MOFs and on electrostatic control of many-body quantum phases therein.Comment: 19 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions