10,009 research outputs found

    Dynamical Effects of Nuclear Rings in Disk Galaxies

    Get PDF
    We investigate the dynamical response of stellar orbits in a rotating barred galaxy potential to the perturbation by a nuclear gaseous ring. The change in 3D periodic orbit families is examined as the gas accumulates between the inner Lindblad resonances. It is found that the phase space allowable to the x2 family of orbits is substantially increased and a vertical instability strip appears with the growing mass of the ring. A significant distortion of the x1 orbits is observed in the vicinity of the ring, which leads to the intersection between orbits with different values of the Jacobi integral. We also examine the dependence of the orbital response to the eccentricity and alignment of the ring with the bar. Misalignment between an oval ring and a bar can leave observational footprints in the form of twisted near-infrared isophotes in the vicinity of the ring. It is inferred that a massive nuclear ring acts to weaken and dissolve the stellar bar exterior to the ring, whereas only weakly affecting the orbits interior to the inner Lindblad resonances. Consequences for gas evolution in the circumnuclear regions of barred galaxies are discussed as well.Comment: 27 pages, 11 postscript figures included, latex using aastex 4.0, uuencoded compressed tar file, to appear in Ap

    Imaging and manipulating electrons in a 1D quantum dot with Coulomb blockade microscopy

    Get PDF
    Motivated by the recent experiments by the Westervelt group using a mobile tip to probe the electronic state of quantum dots formed on a segmented nanowire, we study the shifts in Coulomb blockade peak positions as a function of the spatial variation of the tip potential, which can be termed "Coulomb blockade microscopy". We show that if the tip can be brought sufficiently close to the nanowire, one can distinguish a high density electronic liquid state from a Wigner crystal state by microscopy with a weak tip potential. In the opposite limit of a strongly negative tip potential, the potential depletes the electronic density under it and divides the quantum wire into two partitions. There the tip can push individual electrons from one partition to the other, and the Coulomb blockade micrograph can clearly track such transitions. We show that this phenomenon can be used to qualitatively estimate the relative importance of the electron interaction compared to one particle potential and kinetic energies. Finally, we propose that a weak tip Coulomb blockade micrograph focusing on the transition between electron number N=0 and N=1 states may be used to experimentally map the one-particle potential landscape produced by impurities and inhomogeneities.Comment: 4 pages 7 figure

    Magnetic component of Yang-Mills plasma

    Full text link
    Confinement in non-Abelian gauge theories is commonly ascribed to percolation of magnetic monopoles, or strings in the vacuum. At the deconfinement phase transition the condensed magnetic degrees of freedom are released into gluon plasma as thermal magnetic monopoles. We point out that within the percolation picture lattice simulations can be used to estimate the monopole content of the gluon plasma. We show that right above the critical temperature the monopole density remains a constant function of temperature, as for a liquid, and then grows, like for a gas.Comment: 4 pages, no figures; replaced to match published versio

    The Central Region in M100: Observations and Modeling

    Full text link
    We present new high-resolution observations of the center of the late-type spiral M100 (NGC 4321) supplemented by 3D numerical modeling of stellar and gas dynamics, including star formation (SF). NIR imaging has revealed a stellar bar, previously inferred from optical and 21 cm observations, and an ovally-shaped ring-like structure in the plane of the disk. The K isophotes become progressively elongated and skewed to the position angle of the bar (outside and inside the `ring') forming an inner bar-like region. The galaxy exhibits a circumnuclear starburst in the inner part of the K `ring'. Two maxima of the K emission have been observed to lie symmetrically with respect to the nucleus and equidistant from it slightly leading the stellar bar. We interpret the twists in the K isophotes as being indicative of the presence of a double inner Lindblad resonance (ILR) and test this hypothesis by modeling the gas flow in a self-consistent gas + stars disk embedded in a halo, with an overall NGC4321-like mass distribution. We have reproduced the basic morphology of the region (the bar, the large scale trailing shocks, two symmetric K peaks corresponding to gas compression maxima which lie at the caustic formed by the interaction of a pair of trailing and leading shocks in the vicinity of the inner ILR, both peaks being sites of SF, and two additional zones of SF corresponding to the gas compression maxima, referred usually as `twin peaks').Comment: 31 pages, postscript, compressed, uuencoded. 21 figures available in postscript, compressed form by anonymous ftp from ftp://asta.pa.uky.edu/shlosman/main100 , mget *.ps.Z. To appear in Ap.

    Study of information transfer optimization for communication satellites

    Get PDF
    The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described

    Induced Nested Galactic Bars Inside Assembling Dark Matter Halos

    Get PDF
    We investigate the formation and evolution of nested bar systems in disk galaxies in a cosmological setting. Development of an isolated dark matter (DM) and baryon density perturbation has been followed. The disks form and grow within the assembling triaxial DM halos. The gas forms stars and the feedback from the stellar evolution is accounted for in terms of supernovae and OB stellar winds. Focusing on a representative model, we show the formation of a nested bars with characteristic sub-kpc and few kpc sizes. The system evolves through successive dynamical couplings and decouplings, forcing the gas inwards, down to the limiting scale of a numerical resolution. It settles in a state of a resonant coupling. The initial bar formation is triggered in response to the tidal torques from the triaxial DM halo which acts as a finite perturbation. An oval disk with strong and varying grand-design arms forms as well. The inflow rate can support a broad range of activity within the central kpc, from quasar- to Seyfert-types, supplemented by a vigorous star formation as a by-product

    Multiple Scattering Theory for Two-dimensional Electron Gases in the Presence of Spin-Orbit Coupling

    Full text link
    In order to model the phase-coherent scattering of electrons in two-dimensional electron gases in the presence of Rashba spin-orbit coupling, a general partial-wave expansion is developed for scattering from a cylindrically symmetric potential. The theory is applied to possible electron flow imaging experiments using a moveable scanning probe microscope tip. In such experiments, it is demonstrated theoretically that the Rashba spin-orbit coupling can give rise to spin interference effects, even for unpolarized electrons at nonzero temperature and no magnetic field.Comment: 34 pages, 7 figure
    • …
    corecore