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Imaging and manipulating electronsin a 1D quantum dot with Coulomb blockade microscopy

Jiang QiaA?, Bertrand |. Halperih and Eric J. Helley
1 Physics Department, Harvard University, Cambridge, MA Z21USA
2 Arnold Sommerfeld Center for Theoretical Physics and GebteNanoScience, Ludwig-Maximilians-Universitat Minen, Germany
(Dated: March 23, 2010)

Motivated by recent experiments by the Westervelt grougchvihsed a mobile tip to probe the electronic
state of a segmented nanowire, we calculate shifts in Cdulblockade peak positions, as a function of tip
location, which we term “Coulomb blockade microscopy”. Wew that if the tip can be brought sufficiently
close to the nanowire, one can distinguish a high densitstreleic liquid state from a Wigner crystal state by
microscopy with a weak tip potential. In the opposite limitaostrongly negative tip potential, the potential
depletes the electronic density under it and divides thetyma wire into two partitions. There the tip can push
individual electrons from one partition to the other, anel@oulomb blockade micrograph can clearly track such
transitions. We show that this phenomenon can be used tdajivaly estimate the relative importance of the
electron interaction compared to one particle potentidlldnetic energies. Finally, we propose that a weak tip
Coulomb blockade micrograph focusing on the transitiomben electron numbét = 0 andN = 1 states may
be used to experimentally map the one-particle potentialdeape produced by impurities and inhomogeneities.

I. INTRODUCTION

STM tip

Studies of nanoscale electronic structures hold important
promise both as laboratories for few-body, interactingmgua
tum mechanical systems and as technological testbeds for
future classical or quantum computing technologies. Novel
probe technologie&? are very important for studying elec-
tronic properties in nanoscale systems because they am oft
beyond the resolution of conventional imaging techniqikes |
optical microscopy, and traditional transport measurgmen FIG. 1. Schematic geometry of Coulomb blockade microscdpy o
can On|y measure Spat|a||y averaged physica| propertm sya quantum wire containing four electrons. When calculatimg;
as the conductance or the current. One scanning probe nfilectron-electron intera}ction and the ele_ctron-tip iatdon, we as-
croscopy (SPM technique utilizes a charged metallic tip to Sume that the InP barriers have zero thickness, the InAsiwire
perturb the local electronic density in a nanoelectromigcst gmtely long, and the substrate layers extend to infinity iand y

. o . . irections.
ture while monitoring the resulting change in transportgpro
erties. Using this technique one can obtain spatially kesbl
measurement of the electronic properties, including tieallo
electron density and, in principle, the wavefunction itsel
the case of a one-electron sysfésee discussions below).
This imaging technique has been fruitfully applied to study e consider a uniform InAs (dielectric constant 15.4,
the flow of ballistic electrons across a range of two dimen-Bohr radiusag ~ 34nm) nanowire of radiuR = 10nm, which
sional heterostructures. lies in vacuum atop a SiQ(e = 3.9) layer 100nm thick, sep-

arating it from conducting doped bulk silicon (see Hig). 1).

Recently, a series of experimehtpplied SPM techniques Electrons are modelled as point charges traveling along the
to study quantum wires. In these experiments a segment aienter axis of the wire, confined to interval% <X < %
an InAs nanowire lying on top of a two-dimensional IO by hard walls, representing the InP layers. We consider
layer was isolated from the rest of the wire by two shortlengthL from 110nm to 500nm. The electron-electron in-
InP segments, forming a one-dimensional quantum dot witheractionU (x;, — x2) was calculated using the commercial
lithographically defined boundaries. A negatively chargedinite-element program Comsdlto solve the classical Pois-
probe scanned controllably the two dimensional area arounslon equation for a point charge on the axis of an infinite wire
the wire and the conductance across the 1D quantum dot wabove in a substrate with the geometry described infFig. 1. At
measured as a function of the probe location. Both the veltagshort distancé\x, the potential was softened to account for
of the probe and its height above the surface can also be ind#ie finite thickness of the electron wavefunction, by replac
pendently varied. Motivated by these new experimental posing Ax " with [(Ax)2 + R?~%/2. Following the approximation
sibilities, we turn to exact diagonalization techniquesttady ~ used by Topink3 we model the negatively charged probe as a
the conductance response of a few-electron quantum dot adiged point charge of strengtiat a locationy relative to the
function of a spatially varied probe potential, in orderlbos-  center point of the wire. This gives rise to a one-body poten-
trate the kind of information that can be extracted in theecastial V (x; fp, ) for an electron on the wire axis at poitwhich
of a system of several electrons. we again obtain by solving the Poisson equation (results are

1. MODEL
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FIG. 3: (Color Online) Electronic densities foL.a= 110nmwire and
for aL = 500nmwire in absence of tip potential. Only the right half
) ) ) is shown, as the plot is symmetric about 0. We rescale the and
FIG. 2: (Color Online) (Dotted)Interaction potentie(Az).(Solid, 5 (x) with wire lengthL to ease the comparison.
long and short dashed) Thy(x) potentials with a tip chargg = e

and locationsp = (0,0, Zp) wherezg = 30nm 50nm 100hm

shown in Fig[®). o .
In this paper, we diagona”ze the exact 1D many-bodystate for our wire IAE ~ 148meV. The most confined ge-

Hamiltonian with the Lanczos meth®dor up to electron ~Ometry we discuss is shown in Fig. 6La= 110nmwire with
numbem = 4: four electrons under an extremely strong tips, squeeziamth

N i1 into the both ends qf the wire. Even in that case, tttal

Z U(x,x)¥ = E W energy per electron is less tharj Mé)/,.not enc_>ugh to cause
; & 7 ’ an excited transverse mode, with full interaction effeaken

(1) intoaccount. Thus we expect the quantum wire to be well ap-

where W is the full many-body wavefunction, depending prox_lmated by a 1D model for all the parameters we explored
on the positionx; and sping; of the electrons. To con- in this paper.
nect to the experimentally observable variables, we censid
the Coulomb blockade peglositionsof the transition from The existence of higher transverse modes will lead to a
(N—1) to N electron ground states. The conductance througmenormalization of the effective electron-electron iat#ion
the quantum wire is maximum when the chemical potentialgenerally a softening of the potential at short distanegeh
difference between the lead and the wire, controlled by théf the energies of the modes are well above the Fermi energy.
voltageVy on a back gate, is equal to the ground state enThis is because two electrons that come close together in the
ergy difference between the two states in question. We malpwest transverse mode will mix, virtually, with states wée
write this condition as\E = Ey — Ey_1 = aVg + 3, where the electrons are in excited modes. As our calculations use,
B is a constant and is the proportionality constant between already, a crude phenomenological cut-off at short digtanc
changes in the back gate voltage and the chemical potemtial we do not include explicitly effects of this renormalizatio
the quantum dot. We probe the electronic states in the quard€chnically, the existence of higher transverse modeslsan a
tum wire through the dependence®E on the tip position lead to three-body and four-body effective interactiomis-a
fo and potential strength. An interesting set of spatially re- ing from three-body and four-body collisions, but we do not
solved information about the electrons in the wire can be exexpect such higher body terms to be important in the wires
tracted from this function, and we call this method “Coulombunder consideration.
blockade microscopy”. It is a special application of thedise
ning probe microscopy” developed by the Westervelt gfoup ~ We want to emphasize that although we choose a specific
In calculations in this paper we focus on the transition fromwire geometry and a specific form of interaction that model
N = 3 to N = 4 electrons, but most of our conclusions aresome characteristics of the setup of the Westervelt group’s
easily generalizable to other ground state transitions. on-going experiments, most features of the Coulomb block-

Finally, we note that for four non-interacting electronstwi  ade micrographs we discuss below are applicable to any 1D
spin in a wire of radiusR = 10nm when the dot length quantum dot system under a mobile potential. Indeed, our
L > Lm=182nm, the lowest four single particle energy levels discussions of the qualitative features of Coulomb bloekad
are all longitudinal modes. The shortest wire length we conmicrographs under both the weak-tip and the strong-tip lim-
sider in this papet = 110nm>> L, we therefore expect the its rely only on the general properties of 1D electronic sys-
wires under consideration can be well approximated aglgtric tems, independent of the specific geometry and interacteon w
1D under the assumption of weak interaction effects. Indeecadopt. Our numerical results mostly serve for illustrapue-
the gap between the transverse ground state and first excitpdses.

ﬁZ ) N
——0W+ ZV(xi;r?),q)lP+
2mr = i



L=500nm xg(nm)

0 50 100 150 200 250 300
73.68 T = T

zO'= 30nm
zop= 50nm =— —
zp=100nm = = » 4

LE110nM ——
L=500nm == ==

1 9.64
73.66

1 9.56

Ey -E;3 (meV)

f— 73.64 |

110nm E,-E;(meV)
500nm E -E;(meV)

1 9.52

L
L

73.62 9.48

0 10 20 30 40 50
L=110nm x,(nm)

0 50 100 150 200 250

xg (nm)

FIG. 4: (Color Online) Coulomb blockade micrographs for a 1D FIG. 5: (Color Online)q = 0.02e weak tip limit for theN = 3 to

dot with L = 500nm and tip chargg = 0.02e for three tip poten- N = 4 Coulomb blockade transition for densities shown in Elg. 3.

tial shown in Fid:2. Again, the right half is shown. The tip distance to the wire igy = 30nm Only the right half is
shown.

I11. ELECTRONIC DENSITY
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In the absence of a probe potentglboth theN = 3 and 190
N = 4 wires the electronic density profifg(x) undergoes a
crossover as a function &ffrom a liquid state characterized
by a Zg Friedel oscillations to a quasi-Wigner crystal state
characterized by aké¢ density oscillation. Such a crossover
from a liquid state to quasi-Wigner states with a decrease in
density a very generic phenomenon for 1D interacting fermio . , , , , ,
syste 8. Indeed, for any interacting decaying no faster than 0 10 2 o j‘;um) 40 50
x~2 at long distance a quasi-Wigner crystal state is known ’
to emerge at low densfy This requirement for interaction
will hold for a system with long screening length as compared
to mean inter-particle distance, as is the case for our geong, 6: (Color Online)y = 8e strong tip limit for theN = 3 toN = 4
etry when the screening doped silicon layer is relatively fa coulomb blockade transition for densities shown in Flg. 2 Tip to
(100um) away. For our specific geometry and interaction, thewire distance is 30m Only the right half is scanned.
crossover happens at around dengitys 35um~1. A Wigner
crystallized density variation is shown in the dashed caifve
Fig.[3 for a quantum dot df = 500nm whereas fot. =110  quasi-Wigner crystal state on the right can be detectedein th
the four electron density exhibits Friedel oscillations. Coulomb blockade micrograph, whereas wimgn= 100nm
away, the tip potential becomes much too broad to resolve the
fine features of the density oscillations. We note that ai¢fo
IV. WEAK TIPLIMIT the resolution of the tip is largely determined by the dis&@n
Zp, the contrast of a Coulomb blockade micrograph, i.e. the
Now we introduce a weak tip potential, corresponding to amagnitude of the K= variations in the micrographs, can be
negatively charged tip of strength= 0.02e, scanning above improved by modestly increasing the tip potential.
the center axis of the quantum wire along its directib®, 0), By contrast, in Fig[b thé& = 110nm micrograph atg =
with the tip location vectorp = (xp,0,2). For a 1D quan- 30nmdoes not show features of Wigner crystal oscillations.
tum dot of lengthL = 500nm, which as shown in Fid.]3 has However, this micrograph does not by itself give a clearcut
4ke Wigner-crystal density variation, let us consider the ¢hre indication of the absence of Wigner crystal order for=
tip heights above the quantum wigg,= 30nm 50nm, 100nm,  110nm. With the current interaction and tip parameters, one
corresponding to the three tip potential shown in Elg. 2. Thecannot observe the crossover from the Wigner crystal to the
resulting Coulomb blockade peak positibg as a function of  Friedel oscillations because it happens at a inter-parsighc-
the tip coordinateg along the wire, i.e. the Coulomb block- ing Ax = 30nm, below the resolution of the micrograph even
ade micrograph, is shown in Figl 4. Clearly, in Hig. 2 theatz= 30nm. To be more specific, we may define the onset
closer the tip approaches the wire, the more localized isghe of Wigner-crystal order for our four-electron system as the
potential and a sharper tip potential make it easier to vesol lengthL at which there first appears a local minimum of the
the density variations, this is reflected in Coulomb bloekad mean density(x) in the vicinity of x/L = 0.25. According
micrograph scans in Fifl] 4. A = 30nm 50nmfrom the tip  to our calculations, this should occur at L=135 nm. However,
to the center of the wire, thekd density oscillation of the with the tip at height 30nm, in the weak charge limit, the reso
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0 0 FIG. 8: Schematic illustrations of partition of the foueetron state
-250 -200 -150 -100 -50 0 50 100 150 200 250 by the potential barrier under a strong tip potential. Ingadl (b),

x (am) single-electron energy levels are shown for non-intengatiectrons,

for two positions of the tip. Because of spin degeneracy, ne di-
ther two electrons in each well, or all four in the same welhew
FIG. 7: Electronic densities ib = 500nm N = 4 quantum wire as a  the energy of the single-electron ground state on the righbimes
tip g = 8e scan through & xp < 250nm The density throughout the  higher than the first excited level on the left. In (c)-(e), fireor-
entire wire—250nm < x < 250mis shown. porate” interaction energy into “single electron levelshematically
by plotting the energy needed to add an additional electrodraw-
ing energy levels this way, it is clear that the spin degeseia the
lution of the micrograph is of the order of 60nm, so we wouldnon-interacting case is lifted by electron interactiond @m addi-
not see a secondary minimum in the micrograph signal untitional (3,1) partition will appear for the “energy level’rangement
L > 250nm in (d). Filled circles show electrons in occupied levels.
To gain a more intuitive understanding of a weak tip
Coulomb blockade micrograph, we observe that a weak tip _ )
only slightly disturbs the electron density as it scans sero Wire show two relatively sharp peaks for a large tip charge
the wire, thus, a simple first order perturbation theory #thou d= 8. This is in contrast with the case of a weak tip fig. 5,
be a good approximation to compute the ground state energyhere the Coulomb blockade micrographs show smooth spa-

in the presence of the tip potential: tial dependence as well as sensitivity to the electrontesta
the absence of the tip potential.
_ _ . To understand the physics of this strong tip limit we note
E.a)—Eofa) = / dx V{106, x)p (x). @) that the two sharp cusps in Figl. 6 represents discontinuous

) _ ) ) slope changes in thid = 4 electron ground state energy as a
where p(x) is the non-interacting ground state density andgynction of tip positionxo. Similarly the deep valley in the fig-
Eo(ro,q) is its energy. We have checked that for tip chargesyre corresponds to a cuspha= 3 ground state energy. The
up toq = 0.1ethe simple first order perturbation theory gives grigin of these three discontinuities in slopes can be seen i
a decent fit Fo both the gr_ound state energy and the Coulompig'm_ In this limit, the negatively charged tip potentisiso
blockade micrograph. Since both the width and the centegiong that it depletes the electronic density under it.sThe
location of the tip potentiaV/ (rp; ,x) can be adjusted exper- iy creates an effective partition of the electrons in theewi
imentally, the Coulomb blockade microscopy with a weak tipinto left and right sub-quantum dot. As shown in Ffy. 7, as
potential provides a flexible way to map the electronic densihe tip move from the center to right of the wire with four
ties in a quantum dot. Indeed, as an example of such flexibilg|ectrons, the partitions of the electrons undergoes twiapab
ity, we find that one can improve the “contrast” of a COU|0mbtransitions(2, 2) — (3,1) — (4,0). These two transitions cor-
blockade micrograph; i.e., the prominence of the spatiat va respond to the two upward cusps shown in ke 4 curve
ations in micrographs like Fig] 4 as compared with the total, Fig.[@. Similarly, the discontinuous slope change shown o
energy shifte4 — Es, can be improved by slightly increasing theN = 3 curve of the FigJ6 corresponds to the transition be-
the.t|p potentlgl wh|le still staying within the weak tip p@~  yveen the(2,1) — (3,0) partition of the ground state. Thus
bative approximation. the three discontinuities seen in the Coulomb blockade mi-

crographs in Fid.]6 correspond to, alternately, the tramsit
between the integer partitioning of total electron numbers
V. STRONGTIPLIMIT theN = 3 andN = 4 system. The upward slope of the curve
nearxg = 0 reflects an additional downward cusp at the origin,
In the opposite limit of strong tip, the Coulomb blockade due to the transition (1,2}(2,1) in theN = 3 wire.
tip scans present a very different physical picture. In Big.  To better understand the transitions between differenitpar
we observe that irrespective of whether the electroniessat tions, let us consider the transitions in a modelNof£ 4 elec-
liquid or Wigner-crystal like as shown in Figl 3, the Coulomb trons, with spin, which have no Coulomb repulsion between
blockade micrographs show similar behavior: in the case othem but interact with a repulsive tip potential. The sceanar
N = 3toN =4 transition, both the = 110nm and. = 500nm s illustrated in Fig[B, panel&@) — (b). When tip is near the



58 68 -
- effective charge =0 ——
effective charge q=0.6 ———
effective charge q=1.8 - - - -

=
o

tip g=0.

o

57 67

56 66
55 65

54 64

0.6 E4-E3(meV)
POY*L

1.8 E4-E3(meV)

53 63

q
q

52 62

51 61

50 60
0.09 0.1 0.11 012 0.13 0.14 0.15 0.16 0.17 0.18

X (nm)

o B N W A~ O O N ©

FIG. 9: (Color Online).q = 0.6e andq = 1.8e intermediate tip po- FIG. 10: (Color Online) Electronic density forla= 180nm wire
tentials forN = 3 toN = 4 Coulomb blockade transition in a wire of under three tip potentials, with effective charges- Oe, g = 0.6e
lengthL = 180nm The tip distance to the wire i = 30nm Only andqg = 1.8e. Only the right half is shown, as the plot is symmetric
the right half is shown. aboutx = 0. We rescale the andp(x) with the wire length_.

VI. INTERMEDIATE TIP CHARGE

We have carried out calculations with various tip charges
intermediate between the two limits discussed above. Ia gen
eral, the larger the charge on the tip, the more readily one
sees the secondary minima in the micrograph signal, which
are seen in Fid.]6 for a charge= 8e, even atL = 110nm
As one illustration, for a wire of length 180 nm, with a tip
height of 30 nm, we find that the micrograph signal shows a
secondary minimum a¢/L ~ 0.15 forq = 1.8e, but shows no
secondary minimum wheg = 0.6e, as seen in Fid.]9 How-
ever, if we calculate the electron density in the wire when
the tip is over the center of the wirgy(= 0), we find that
a tip charge ofj = 0.6eis enough to substantially modify the
Odensity relative to the density in the absence of the tip. As
seen in Fig[10, the electron density below the tipx at 0
is reduced by a factor of three relative to the density with no
tip charge. Nevertheless, the oscillations seep() remain
qualitatively similar to structure seen in the absence etijh

As schematically illustrated in Fid] 8, panels) — (e), For example, the charged tip only pushes out the position of
when we take electron interaction into consideration, the o the secondary minimum in the density fragil = 0.25 to
and two electron state would no longer be degenerate inreithe/L = 0.3.
partition, so contrary to the non-interacting scenarigsanel In general, when we increase the tip potential to intermedi-
(a) — (b), here a(3,1) partition can survive as an interme- ate values, the resolution of our micrographs improves com-
diate stage between th{g,2) and(4,0) partitions. With the pared with the weak tip limit. This is evident in the fact that
non-interacting case in mind, we postulate that the digtancq= 1.8ewe can already see signs of Wigner crystallization at
between two peaks ih = 3 to N = 4 micrographs, corre- L =180nm, in contrast with the weak tip case with= 0.02e
sponding to the tip positions whe(8, 1) partitioning in the =~ where we can only detect quasi-Wigner crystdl at 250nm
N = 4 wire is stable, can serve as an indicator of the relaOn the other hand, at= 1.8ethere isnosignature of Wigner
tive importance of the interaction energy versus the sum o€rystallization when the electrons are in a liquid state in a
kinetic and single particle potential energies. The legsom L = 110nmwire. Thus we do not have "false positive” sig-
tant interaction is compared to single particle energhesleéss  nature of quasi-Wigner crystal, in contrast with the strtipg
splitting would the one and two particle energies be, and théimit described in SectidnV, where the micrographs shéw
smaller is the region of stab(8&, 1) partition. This can be seen peaks for aN-electron wire regardless whether, in the wire in
in Fig.[8. The potential energy should have a larger share ithe absence of the tip, the electrons are in a liquid or a guasi
the total energy in the longer wire with lower electronic den Wigner crystal state.
sity, and indeed we observe that the longer wire has a wider Because of these two characteristics, an intermediatetip p
distance between the two peaks marki@g?) — (3,1) and tential may help an experimentalist to reliably detect thesp
(3,1) — (4,0) transitions. ence of a quasi-Wigner crystal state in a shorter, highesiten

center of the wire, the electrons are partitioii2®) and both
electrons in each side reside in the single-particle greiame.
As the tip moves rightward, the energy levels rise in thetrigh
partition and fall in the left. When the first excited levelthe
left partition crosses the ground state on the rigbth elec-
trons will move to the left partition. Therefore, contraoythe
interacting case, there is no energetically favorablee st
(3,1) partitioning in the non-interacting system. In tNe=3
case, thg2,1) partition is not affected by this, and for non-
interacting system the transitid@, 1) — (3,0) will coincide
with the transition irN = 4, so the Coulomb blockade micro-
graph will show only a single peak. This analysis can als
be generalized to a wire containing multiple non-interagti
electrons, such that all thedd, odd) partitionings of elec-
tron number will be missing.



wire closer to the crossover from a liquid state. the other, and the accompanying Coulomb blockade micro-
graph can indicate the transitions between different {oamti
ings. Furthermore, a feature of the resulting micrograpé, t
VIlI. SINGLE ELECTRON distance between peaks marking tloeld, odd) partitioning,
can serve as an indicator of the relative strength of the-inte

Beyond the system of interacting electrons discussed abovaction.
a possible further application of Coulomb blockade mi- In this paper we have chosen extreme values of the tip
croscopy is to experimentally “map” the rugged potentialchargeq to illustrate the physics in the two limits. However,
landscape produced by wire inhomogeneities and charged inour calculations show that the discussions above hold tue f
purities in the substrate. One would focus on the transitiora wider range of moderately small and large valueg. of

fromN = 0toN =1 state, in which case the Coulomb block-  To obtain a quantitative description of the energy shifts ex
ade micrograph would reveal information about the singte pa pected in Coulomb blockade microscopy, particularly in the
ticle density. By inverting the transformation in Ed. 2, oneintermediate coupling regime, we see that it is necessary to
may be able to approximately obtain the single particle gdou perform a realistic calculation, which takes into accousthb
state densityp(x). In the absence of an external magneticthe electron-electron interaction and the non-linearotéfef
field, the ground state wavefunctigh(x) has no nodes and the charged tip on the electronic state of the wire. If one is
can be chosen to bg(x) = (p(x))¥? It is then straightfor- prepared to carry out such a calculation, however, Coulomb
ward to invert the Schrodinger’s equation to extract thiepo  blockade microscopy can be a powerful probe of interaction
tial landscape from the single particle wavefunction. effects in the wire.

VI, SUMMARY
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