135 research outputs found

    Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2009 The Authors.Background - Clusterin expression in various types of human cancers may be higher or lower than in normal tissue, and clusterin may promote or inhibit apoptosis, cell motility, and inflammation. We investigated the role of clusterin in tumor development in mouse models of neuroblastoma. Methods - We assessed expression of microRNAs in the miR-17-92 cluster by real-time reverse transcription–polymerase chain reaction in MYCN-transfected SH-SY5Y and SH-EP cells and inhibited expression by transfection with microRNA antisense oligonucleotides. Tumor development was studied in mice (n = 66) that were heterozygous or homozygous for the MYCN transgene and/or for the clusterin gene; these mice were from a cross between MYCN-transgenic mice, which develop neuroblastoma, and clusterin-knockout mice. Tumor growth and metastasis were studied in immunodeficient mice that were injected with human neuroblastoma cells that had enhanced (by clusterin transfection, four mice per group) or reduced (by clusterin short hairpin RNA [shRNA] transfection, eight mice per group) clusterin expression. All statistical tests were two-sided. Results - Clusterin expression increased when expression of MYCN-induced miR-17-92 microRNA cluster in SH-SY5Y neuroblastoma cells was inhibited by transfection with antisense oligonucleotides compared with scrambled oligonucleotides. Statistically significantly more neuroblastoma-bearing MYCN-transgenic mice were found in groups with zero or one clusterin allele than in those with two clusterin alleles (eg, 12 tumor-bearing mice in the zero-allele group vs three in the two-allele group, n = 22 mice per group; relative risk for neuroblastoma development = 4.85, 95% confidence interval [CI] = 1.69 to 14.00; P = .005). Five weeks after injection, fewer clusterin-overexpressing LA-N-5 human neuroblastoma cells than control cells were found in mouse liver or bone marrow, but statistically significantly more clusterin shRNA-transfected HTLA230 cells (3.27%, with decreased clusterin expression) than control-transfected cells (1.53%) were found in the bone marrow (difference = 1.74%, 95% CI = 0.24% to 3.24%, P = .026). Conclusions - We report, to our knowledge, the first genetic evidence that clusterin is a tumor and metastasis suppressor gene.Sport Aiding Medical Research for Kids (SPARKS), Great Ormond Street Hospital/National Health Service, the National Cancer Institute and University of Parma

    A novel mitochondrial m.4414T > C MT-TM gene variant causing progressive external ophthalmoplegia and myopathy

    Get PDF
    tract We report a novel mitochondrial m.4414T>C variant in the mt-tRNAMet (MT-TM) gene in an adult patient with chronic progressive external ophthalmoplegia and myopathy whose muscle biopsy revealed focal cytochrome c oxidase (COX)-deficient and ragged red fibres. The m.4414T>C variant occurs at a strongly evolutionary conserved sequence position, disturbing a canonical base pair and disrupting the secondary and tertiary structure of the mt-tRNAMet. Definitive evidence of pathogenicity is provided by clear segregation of m.4414T>C mutant levels with COX deficiency in single muscle fibres. Interestingly, the variant is present in skeletal muscle at relatively low levels (30%) and undetectable in accessible, non-muscle tissues from the patient and her asymptomatic brother, emphasizing the continuing requirement for a diagnostic muscle biopsy as the preferred tissue for mtDNA genetic investigations of mt-tRNA variants leading to mitochondrial myopathy

    Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution

    Get PDF
    August 1, 2010Bisulfite sequencing measures absolute levels of DNA methylation at single-nucleotide resolution, providing a robust platform for molecular diagnostics. Here, we optimize bisulfite sequencing for genome-scale analysis of clinical samples. Specifically, we outline how restriction digestion targets bisulfite sequencing to hotspots of epigenetic regulation; we show that 30ng of DNA are sufficient for genome-scale analysis; we demonstrate that our protocol works well on formalinfixed, paraffin-embedded (FFPE) samples; and we describe a statistical method for assessing significance of altered DNA methylation patterns.National Institutes of Health (U.S.) (Grant R01HG004401)National Institutes of Health (U.S.) (Grant U54HG03067)National Institutes of Health (U.S.) (Grant U01ES017155

    Severe inflammatory reaction induced by peritoneal trauma is the key driving mechanism of postoperative adhesion formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many factors have been put forward as a driving mechanism of surgery-triggered adhesion formation (AF). In this study, we underline the key role of specific surgical trauma related with open surgery (OS) and laparoscopic (LS) conditions in postoperative AF and we aimed to study peritoneal tissue inflammatory reaction (TIR), remodelling specific complications of open surgery (OS) versus LS and subsequently evaluating AF induced by these conditions.</p> <p>Methods</p> <p>A prospective randomized study was done in 80 anaesthetised female Wistar rats divided equally into 2 groups. Specific traumatic OS conditions were induced by midline incision line (MIL) extension and tissue drying and specific LS conditions were remodelled by intraperitoneal CO<sub>2 </sub>insufflation at the 10 cm of water. TIR was evaluated at the 24<sup>th</sup>, 72<sup>nd</sup>, 120<sup>th </sup>and 168<sup>th </sup>hour by scoring scale. Statistical analysis was performed by the non-parametric t test and two-way ANOVA using Bonferroni post-tests.</p> <p>Results</p> <p>More pronounced residual TIR was registered after OS than after LS. There were no significant TIR interactions though highly significant differences were observed between the OS and LS groups (p < 0.0001) with regard to surgical and time factors. The TIR change differences between the OS and LS groups were pronounced with postoperative time p < 0.05 at the 24<sup>th </sup>and 72<sup>nd</sup>; p < 0.01 - 120<sup>th </sup>and p < 0.001 - 168<sup>th </sup>hrs. Adhesion free wounds were observed in 20.0 and 31.0% of cases after creation of OS and LS conditions respectively; with no significant differences between these values (p > 0.05). However larger adhesion size (41.67 ± 33.63) was observed after OS in comparison with LS (20.31 ± 16.38). The upper-lower 95% confidential limits ranged from 60.29 to 23.04 and from 29.04 to 11.59 respectively after OS and LS groups with significant differences (p = 0.03). Analogous changes were observed in adhesion severity values. Subsequently, severe TIR parameters were followed by larger sizes of severe postoperative adhesions in the OS group than those observed in the LS group.</p> <p>Conclusions</p> <p>MIL extension and tissue drying seem to be the key factors in the pathogenesis of adhesion formation, triggering severe inflammatory reactions of the peritoneal tissue surrounding the MIL resulting in local and systemic consequences. CO<sub>2 </sub>insufflation however, led to moderate inflammation and less adhesion formation.</p

    5-Aza-2′-deoxycytidine stress response and apoptosis in prostate cancer

    Get PDF
    While studying on epigenetic regulatory mechanisms (DNA methylation at C-5 of –CpG– cytosine and demethylation of methylated DNA) of certain genes (FAS, CLU, E-cadh, CD44, and Cav-1) associated with prostate cancer development and its better management, we noticed that the used in vivo dose of 5-aza-2′-deoxycytidine (5.0 to 10.0 nM, sufficient to inhibit DNA methyltransferase activity in vitro) helped in the transcription of various genes with known (steroid receptors, AR and ER; ER variants, CD44, CDH1, BRCA1, TGFβR1, MMP3, MMP9, and UPA) and unknown (DAZ and Y-chromosome specific) proteins and the respective cells remained healthy in culture. At a moderate dose (20 to 200 nM) of the inhibitor, cells remain growth arrested. Upon subsequent challenge with increased dose (0.5 to 5.0 μM) of the inhibitor, we observed that the cellular morphology was changing and led to death of the cells with progress of time. Analyses of DNA and anti-, pro-, and apoptotic factors of the affected cells revealed that the molecular events that went on are characteristics of programmed cell death (apoptosis)

    Pooled extracellular receptor-ligand interaction screening using CRISPR activation.

    Get PDF
    Extracellular interactions between cell surface receptors are necessary for signaling and adhesion but identifying them remains technically challenging. We describe a cell-based genome-wide approach employing CRISPR activation to identify receptors for a defined ligand. We show receptors for high-affinity antibodies and low-affinity ligands can be unambiguously identified when used in pools or as individual binding probes. We apply this technique to identify ligands for the adhesion G-protein-coupled receptors and show that the Nogo myelin-associated inhibitory proteins are ligands for ADGRB1. This method will enable extracellular receptor-ligand identification on a genome-wide scale

    CLIPR-59 regulates TNF-α-induced apoptosis by controlling ubiquitination of RIP1

    Get PDF
    Tumor necrosis factor-α (TNF-α) has important roles in several immunological events by regulating apoptosis and transcriptional activation of cytokine genes. Intracellular signaling mediated by TNF-receptor-type 1 (TNFR1) is constituted by two sequential protein complexes: Complex-I containing the receptor and Complex-II-containing Caspase-8. Protein modifications, particularly ubiquitination, are associated with the regulation of the formation of these complexes. However, the underlying mechanisms remain poorly defined. Here, we identified CLIP-170-related 59 kDa protein (CLIPR-59) as a novel adaptor protein for TNFR1. Experimental reduction of CLIPR-59 levels prevented induction of apoptosis and activation of caspases in the context of TNF-α signaling. CLIPR-59 binds TNFR1 but dissociates in response to TNF-α stimulation. However, CLIPR-59 is also involved in and needed for the formation of Complex-II. Moreover, CLIPR-59 regulates TNF-α-induced ubiquitination of receptor-interacting protein 1 (RIP1) by its association with CYLD, a de-ubiquitinating enzyme. These findings suggest that CLIPR-59 modulates ubiquitination of RIP1, resulting in the formation of Complex-II and thus promoting Caspase-8 activation to induce apoptosis by TNF-α

    A mutation update for the FLNC gene in myopathies and cardiomyopathies

    Get PDF
    Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrim

    Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells

    Get PDF
    RECK is a novel tumour suppressor gene that negatively regulates matrix metalloproteinases (MMPs) and inhibits tumour invasion, angiogenesis and metastasis. In the present study, we investigated the effects of epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, on the methylation status of the RECK gene and cancer invasion in oral squamous cell carcinoma cell lines. Our results showed that treatment of oral cancer cells with EGCG partially reversed the hypermethylation status of the RECK gene and significantly enhanced the expression level of RECK mRNA. Inhibition of MMP-2 and MMP-9 levels was also observed in these cells after treatment with EGCG. Interestingly, EGCG significantly suppressed cancer cell-invasive ability by decreasing the number of invasive foci (P<0.0001) as well as invasion depth (P<0.005) in three-dimensional collagen invasion model. Although further investigation is required to assess the extent of contribution of RECK on MMPs to the suppression of invasive behaviour, these results support the conclusion that EGCG plays a key role in suppressing cell invasion through multiple mechanisms, possibly by demethylation effect on MMP inhibitors such as RECK

    The arrhythmogenic cardiomyopathy phenotype associated with PKP2 c.1211dup variant

    Get PDF
    BackgroundThe arrhythmogenic cardiomyopathy (ACM) phenotype, with life-threatening ventricular arrhythmias and heart failure, varies according to genetic aetiology. We aimed to characterise the phenotype associated with the variant c.1211dup (p.Val406Serfs*4) in the plakophilin-2 gene (PKP2) and compare it with previously reported Dutch PKP2 founder variants.MethodsClinical data were collected retrospectively from medical records of 106 PKP2 c.1211dup heterozygous carriers. Using data from the Netherlands ACM Registry, c.1211dup was compared with 3 other truncating PKP2 variants (c.235C > T (p.Arg79*), c.397C > T (p.Gln133*) and c.2489+1G > A (p.?)).ResultsOf the 106 carriers, 47 (44%) were diagnosed with ACM, at a mean age of 41 years. By the end of follow-up, 29 (27%) had experienced sustained ventricular arrhythmias and 12 (11%) had developed heart failure, with male carriers showing significantly higher risks than females on these endpoints (p < 0.05). Based on available cardiac magnetic resonance imaging and echocardiographic data, 46% of the carriers showed either right ventricular dilatation and/or dysfunction, whereas a substantial minority (37%) had some form of left ventricular involvement. Both geographical distribution of carriers and haplotype analysis suggested PKP2 c.1211dup to be a founder variant originating from the South-Western coast of the Netherlands. Finally, a Cox proportional hazards model suggested significant differences in ventricular arrhythmia-free survival between 4 PKP2 founder variants, including c.1211dup.ConclusionsThe PKP2 c.1211dup variant is a Dutch founder variant associated with a typical right-dominant ACM phenotype, but also left ventricular involvement, and a possibly more severe phenotype than other Dutch PKP2 founder variants.Cardiolog
    • …
    corecore