98 research outputs found

    The Small RNA ErsA of Pseudomonas aeruginosa Contributes to Biofilm Development and Motility through Post-transcriptional Modulation of AmrZ

    Get PDF
    The small RNA ErsA of Pseudomonas aeruginosa was previously suggested to be involved in biofilm formation via negative post-transcriptional regulation of the algC gene that encodes the virulence-associated enzyme AlgC, which provides sugar precursors for the synthesis of several polysaccharides. In this study, we show that a knock-out ersA mutant strain forms a flat and uniform biofilm, not characterized by mushroom-multicellular structures typical of a mature biofilm. Conversely, the knock-out mutant strain showed enhanced swarming and twitching motilities. To assess the influence of ErsA on the P. aeruginosa transcriptome, we performed RNA-seq experiments comparing the knock-out mutant with the wild-type. More than 160 genes were found differentially expressed in the knock-out mutant. Parts of these genes, important for biofilm formation and motility regulation, are known to belong also to the AmrZ transcriptional regulator regulon. Here, we show that ErsA binds in vitro and positively regulates amrZ mRNA at post-transcriptional level in vivo suggesting an interesting contribution of the ErsA-amrZ mRNA interaction in biofilm development at several regulatory levels

    Diversity, Prevalence, and Longitudinal Occurrence of Type II Toxin-Antitoxin Systems of Pseudomonas aeruginosa Infecting Cystic Fibrosis Lungs

    Get PDF
    Type II toxin-antitoxin (TA) systems are most commonly composed of two genes encoding a stable toxin, which harms the cell, and an unstable antitoxin that can inactivate it. TA systems were initially characterized as selfish elements, but have recently gained attention for regulating general stress responses responsible for pathogen virulence, formation of drug-tolerant persister cells and biofilms—all implicated in causing recalcitrant chronic infections. We use a bioinformatics approach to explore the distribution and evolution of type II TA loci of the opportunistic pathogen, Pseudomonas aeruginosa, across longitudinally sampled isolates from cystic fibrosis lungs. We identify their location in the genome, mutations, and gain/loss during infection to elucidate their function(s) in stabilizing selfish elements and pathogenesis. We found (1) 26 distinct TA systems, where all isolates harbor four in their core genome and a variable number of the remaining 22 on genomic islands; (2) limited mutations in core genome TA loci, suggesting they are not under negative selection; (3) no evidence for horizontal transmission of elements with TA systems between clone types within patients, despite their ability to mobilize; (4) no gain and limited loss of TA-bearing genomic islands, and of those elements partially lost, the remnant regions carry the TA systems supporting their role in genomic stabilization; (5) no significant correlation between frequency of TA systems and strain ability to establish as chronic infection, but those with a particular TA, are more successful in establishing a chronic infection

    Long-term evolution of antibiotic tolerance in Pseudomonas aeruginosa lung infections

    Get PDF
    Pathogenic bacteria respond to antibiotic pressure with the evolution of resistance but survival can also depend on their ability to tolerate antibiotic treatment, known as tolerance. While a variety of resistance mechanisms and underlying genetics are well characterized in vitro and in vivo, an understanding of the evolution of tolerance, and how it interacts with resistance in situ is lacking. We assayed for tolerance and resistance in isolates of Pseudomonas aeruginosa from chronic cystic fibrosis lung infections spanning up to 40 years of evolution, with 3 clinically relevant antibiotics: meropenem, ciprofloxacin, and tobramycin. We present evidence that tolerance is under positive selection in the lung and that it can act as an evolutionary stepping stone to resistance. However, by examining evolutionary patterns across multiple patients in different clone types, a key result is that the potential for an association between the evolution of resistance and tolerance is not inevitable, and difficult to predict

    Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model

    Get PDF
    Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28 days, mice were intranasally infected with P. aeruginosa. Our study showed that regular exercise resulted in a higher sickness severity score and bacterial (P. aeruginosa) loads in the lungs. The phagocytic capacity of monocytes and neutrophils from spleen and lungs was not affected. Although regular moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa) load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should be encouraged to engage in exercise and physical activities with caution requires further research

    Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies

    Get PDF
    Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations

    Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a CysticFibrosis Patient Treated with b-Lactams

    Get PDF
    Traditional studies on the evolution of antibiotic resistance development use approaches that can range from laboratory-based experimental studies, to epidemiological surveillance, to sequencing of clinical isolates. However, evolutionary trajectories also depend on the environment in which selection takes place, compelling the need to more deeply investigate the impact of environmental complexities and their dynamics over time. Herein, we explored the within-patient adaptive long-term evolution of a Pseudomonas aeruginosa hypermutator lineage in the airways of a cystic fibrosis (CF) patient by performing a chronological tracking of mutations that occurred in different subpopulations; our results demonstrated parallel evolution events in the chromosomally encoded class C β-lactamase (blaPDC). These multiple mutations within blaPDC shaped diverse coexisting alleles, whose frequency dynamics responded to the changing antibiotic selective pressures for more than 26 years of chronic infection. Importantly, the combination of the cumulative mutations in blaPDC provided structural and functional protein changes that resulted in a continuous enhancement of its catalytic efficiency and high level of cephalosporin resistance. This evolution was linked to the persistent treatment with ceftazidime, which we demonstrated selected for variants with robust catalytic activity against this expanded-spectrum cephalosporin. A “gain of function” of collateral resistance toward ceftolozane, a more recently introduced cephalosporin that was not prescribed to this patient, was also observed, and the biochemical basis of this cross-resistance phenomenon was elucidated. This work unveils the evolutionary trajectories paved by bacteria toward a multidrug-resistant phenotype, driven by decades of antibiotic treatment in the natural CF environmental setting. IMPORTANCE Antibiotics are becoming increasingly ineffective to treat bacterial infections. It has been consequently predicted that infectious diseases will become the biggest challenge to human health in the near future. Pseudomonas aeruginosa is considered a paradigm in antimicrobial resistance as it exploits intrinsic and acquired resistance mechanisms to resist virtually all antibiotics known. AmpC β-lactamase is the main mechanism driving resistance in this notorious pathogen to β-lactams, one of the most widely used classes of antibiotics for cystic fibrosis infections. Here, we focus on the β-lactamase gene as a model resistance determinant and unveil the trajectory P. aeruginosa undertakes on the path toward a multidrug-resistant phenotype during the course of two and a half decades of chronic infection in the airways of a cystic fibrosis patient. Integrating genetic and biochemical studies in the natural environment where evolution occurs, we provide a unique perspective on this challenging landscape, addressing fundamental molecular mechanisms of resistance.Fil: Colque, Claudia A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Albarracín Orio, Andrea G. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Hedemann, Laura G. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Feliziani, Sofía. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Moyano, Alejandro J. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Smania, Andrea M. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Colque, Claudia A. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Albarracín Orio, Andrea G. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Hedemann, Laura G. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Feliziani, Sofía. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Moyano, Alejandro J. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Smania, Andrea M. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Tomatis, Pablo E. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Dotta, Gina. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Vila, Alejandro J. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Tomatis, Pablo E. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Moreno, Diego M. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Vila, Alejandro J. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Albarracín Orio, Andrea G. Universidad Católica de Córdoba. Facultad de Ciencias Agropecuarias. (IRNASUS-CONICET); Argentina.Fil: Moreno, Diego M. Universidad Nacional de Rosario. Instituto de Química de Rosario (IQUIR-CONICET); Argentina.Fil: Hickman Rachel A. Department of Clinical Microbiology; Denmark.Fil: Sommer, Lea M. Department of Clinical Microbiology; Denmark.Fil: Johansen, Helle K. Department of Clinical Microbiology; Denmark.Fil: Hickman Rachel A. Technical University of Denmark, Lyngb. Novo Nordisk Foundation Centre for Biosustainability; Denmark.Fil: Sommer, Lea M. Technical University of Denmark, Lyngb. Novo Nordisk Foundation Centre for Biosustainability; Denmark.Fil: Johansen, Helle K. Technical University of Denmark, Lyngb. Novo Nordisk Foundation Centre for Biosustainability; Denmark.Fil: Bonomo, Robert A. Case Western Reserve University. Departments of Molecular Biology and Microbiology, Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics; United States.Fil: Bonomo, Robert A. Senior Clinical Scientist Investigator. Louis Stokes Cleveland Department of Veterans Affairs; United States.Fil: Johansen, Helle K. University of Copenhagen. Department of Clinical Medicine; Denmark
    corecore