185 research outputs found

    3. Wochenbericht POS532

    Get PDF
    18/2/2019-24/2/201

    Pelagic community responses to changes in N:P stoichiometry in the Eastern Tropical Atlantic and Pacific

    Get PDF
    Recent studies indicate that the tropical ocean is losing oxygen. This becomes crucial in regions adjacent to eastern boundary currents, as the productivity of these systems is already accompanied by oxygen minimum zones (OMZ) at depth below the photic zone. The extent of low oxygen water masses influences dissolved nutrient inventories, as oxygen-sensitive nitrogen (N) loss processes such as denitrification and anammox are enhanced and inorganic phosphorus is remobilized from sediments, resulting in low N:P of upwelled waters, especially in the East Pacific. The present study aimed to investigate the impact of changing N and P supply on the pelagic primary producers and consumers in the photic zone. To achieve this, nutrient manipulation experiments were conducted in the eastern tropical Pacific and Atlantic Ocean using a newly designed shipboard mesocosm setup. Results demonstrated that in these regions, where N:P is generally below the canonical Redfield ratio of 16, inorganic N is the key control of bulk productivity regardless of the amount of P added, especially of bloom-forming diatom species and ciliate consumers (chapter I and II). However, the response of individual species and pools of organic matter was found to be more complex. For example, Phaeocystis globosa and Heterosigma sp. clearly benefitted from high P-levels (chapter I). Both algal groups are considered of inferior quality to mesozooplankton consumers compared to diatom-dominated assemblages. The observation that the relative content of unsaturated fatty acids in the particulate matter was positively related to diatom biomass (chapter I) is a second clue that decreasing N flux to the surface ocean impacts food web productivity. However, the RNA/DNA ratio, as a proxy for nutritional condition, did not change in the copepod Undinula vulgaris when fed on the manipulated mesocosm community over a period of three days (chapter II). The results of the nutrient manipulation experiments off Peru and West Africa were surprisingly similar, despite the fact that the North Atlantic features excess N at depth due to N2-fixation and the lack of suboxic conditions that would promote N-loss processes. Furthermore, pigments characteristic for cyanobacteria indicated that diazotrophs were increasing in those mesocosms that had received a higher initial N load (chapter I and II), which contradicts the common understanding that diazotrophs would benefit from excess P. In addition, we observed that the N:P excretion ratio of copepods (U. vulgaris) feeding on the manipulated mesocosm assemblage was influenced by the N:P of bulk particulate organic matter (PON:POP), which in turn responded directly to the manipulation ratios (chapter II). In order to survey the natural variability in N and P excretion rates in the Eastern Tropical North Atlantic, measurements were conducted in shipboard incubations at several stations on three epipelagic copepod species (chapter III). Within species, excretion N:P was positively related to PON:POP at the respective station; however, the low number of stations sampled and the variability of PON:POP within the upper 150 m hampered the establishment of a functional relationship. The N:P excretion ratio was consistently higher in the carnivorous Euchaeta marina compared to the omnivorous U. vulgaris and Scolecithrix danae. This can be attributed to the rather rigid N:P stoichiometry of zooplanktonic prey items of E. marina in contrast to the unicellular food items of the other two species (such as diatoms, dinoflagellates and heterotrophic protists) with more variable N:P. A further question addressed in this study was to what extent atmospheric N sources (N2-fixation and dust) are contributing to secondary production in the Eastern Tropical North Atlantic, and how this contribution is related to the vertical flux of dissolved inorganic nitrogen (chapter IV). We used zooplankton stable nitrogen isotopes (15N) to estimate the relative contribution of atmospheric N sources and found that it ranged from less than 20% off the West African coast to 60% in the open ocean (Guinea Dome region), and was positively related to the depth of the nitracline

    Comparing observed and modelled growth of larval herring (Clupea harengus): Testing individual-based model parameterisations

    Get PDF
    Experiments that directly test larval fish individual-based model (IBM) growth predictions are uncommon since it is difficult to simultaneously measure all relevant metabolic and behavioural attributes. We compared observed and modelled somatic growth of larval herring (Clupea harengus) in short-term (50 degree-day) laboratory trials conducted at 7 and 13°C in which larvae were either unfed or fed ad libitum on different prey sizes (~100 to 550 μm copepods, Acartia tonsa). The larval specific growth rate (SGR, % DW d-1) was generally overestimated by the model, especially for larvae foraging on large prey items. Model parameterisations were adjusted to explore the effect of 1) temporal variability in foraging of individuals, and 2) reduced assimilation efficiency due to rapid gut evacuation at high feeding rates. With these adjustments, the model described larval growth well across temperatures, prey sizes, and larval sizes. Although the experiments performed verified the growth model, variability in growth and foraging behaviour among larvae shows that it is necessary to measure both the physiology and feeding behaviour of the same individual. This is a challenge for experimentalists but will ultimately yield the most valuable data to adequately model environmental impacts on the survival and growth of marine fish early life stages. Comparación entre crecimiento observado y predicho de larvas de arenque (Clupea harengus): analizando parametrizaciones de modelos basados en individuos. – Los experimentos que analizan directamente las predicciones de crecimiento generadas por modelos basados en individuos (IBM) son poco comunes puesto que resulta difícil medir simultáneamente todos los atributos metabólicos y conductuales. En este estudio, comparamos el crecimiento somático observado y el estimado a partir de modelos de larvas de arenque (Clupea harengus) en experimentos de laboratorio a corto plazo (50 grados-día) a 7 y 13°en los que las larvas fueron mantenidas en condiciones de ayuno o recibieron alimentación ad libitum con diferentes tamaños de presa (copépodos, Acartia tonsa, de aproximadamente 100 a 500 μm). Las estimas de tasa específica de crecimiento (SGR, % de peso seco por día) fueron, en general, sobreestimadas por el modelo, especialmente para larvas que se alimentaron con presas grandes. estimas del modelo se ajustaron a dos escenarios para explorar el efecto de 1) variabilidad temporal en la alimentación de las larvas, y 2) disminución en la eficiencia de asimilación debida una rápida evacuación del tubo digestivo a tasas de alimentación altas. Con estos ajustes, el modelo describió bien el crecimiento larvario para temperaturas, tamaños de presa y edades de las larvas, indicando que las parametrizaciones metabólicas son robustas. Aunque los experimentos llevados a cabo con grupos de larvas verificaron los modelos de crecimiento, la variabilidad en el crecimiento y conducta de alimentación entre larvas sometidas a las mismas condiciones ambientales ponen de relieve la necesidad de que las medidas fisiológicas y de conducta vayan emparejadas y sean tomadas a nivel individual. Esto representa un reto para los experimentalistas, pero a largo plazo generará datos valiosos para los modeladores encargados de simular efectos ambientales sobre las tasas vitales de estadíos tempranos de desarrollo de peces marinos

    Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    Get PDF
    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation – a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs

    On the Estimation of Zooplankton-Mediated Active Fluxes in Oxygen Minimum Zone Regions

    Get PDF
    In the Peruvian upwelling system, the mesopelagic oxygen minimum zone (OMZ) is the main vertically structuring feature of the pelagic habitat. Several zooplankton and nekton species undertake diel vertical migrations (DVMs) into anoxic depths. It has been argued that these migrations contribute substantially to the oxygen consumption and release of dissolved compounds (in particular ammonium) in subsurface waters. However, metabolic suppression as a response to low ambient oxygen partial pressure (pO2) has not been accounted for in these estimates. Here, we present estimates of zooplankton- and nekton-mediated oxygen consumption and ammonium release based on vertically stratified net hauls (day/night, upper 1,000 m). Samples were scanned, followed by image analysis and size-/taxon-specific estimation of metabolic rates of all identified organisms as a function of their biomass as well as ambient temperature and pO2. The main crustacean migrants were euphausiids (mainly E. mucronata) on offshore stations and the commercially exploited squat lobster Pleuroncodes monodon on the upper shelf, where it often undertakes migration to the seafloor during the day. Correction for metabolic suppression results in a substantial reduction of both respiration and ammonium excretion within the OMZ core. Ignoring this mechanism leads to a 10-fold higher estimate of DVM-mediated active export of carbon by respiration to below 100 m depth at deep-water stations. The DVM-mediated release of ammonium by euphausiids into the 200–400 m depth layer ranges between 0 and 36.81 μmol NH4 m−2 d−1, which is insufficient to balance published estimates of ammonium uptake rates due to anammox. It seems critical to account for the modulation of zooplankton metabolic activity at low oxygen in order to correctly represent the contribution of migrating species to the biological pump

    Dissolved N:P ratio changes in the eastern tropical North Atlantic: effect on phytoplankton growth and community structure

    Get PDF
    Previous bioassays conducted in the oligotrophic Atlantic Ocean identified availability of inorganic nitrogen (N) as the proximate limiting nutrient control of primary production, but additionally displayed a synergistic growth effect of combined N and phosphorus (P) addition. To classify conditions of nutrient limitation of coastal phytoplankton in the tropical ocean, we performed an 11 d nutrient-enrichment experiment with a natural phytoplankton community from shelf waters off northwest Africa in shipboard mesocosms. We used pigment and gene fingerprinting in combination with flow cytometry for classification and quantification of the taxon-specific photoautotrophic response to differences in nutrient supply. The developing primary bloom was dominated by diatoms and was significantly higher in the treatments receiving initial N addition. The combined supply of N and P did not induce a further increase in phytoplankton abundance compared to high N addition alone. A secondary bloom during the course of the experiment again displayed higher primary producer standing stock in the N-fertilized treatments. Bacterial abundance correlated positively with phytoplankton biomass. Dominance of the photoautotrophic assemblage by N-limited diatoms in conjunction with a probable absence of any P-limited phytoplankton species prevented an additive effect of combined N and P addition on total phytoplankton biomass. Furthermore, after nutrient exhaustion, dinitrogen (N-2)-fixing cyanobacteria succeeded the bloom-forming diatoms. Shelf waters in the tropical eastern Atlantic may thus support growth of diazotrophic cyanobacteria such as Trichodesmium sp. subsequent to upwelling pulses

    Production, partitioning and stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in the tropical Pacific and Atlantic Ocean

    Get PDF
    Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and partitioning of organic matter between the particulate and the dissolved phase are controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry

    Temperature effects on vital rates of different life stages and implications for population growth of Baltic sprat

    Get PDF
    Baltic sprat (Sprattus sprattus balticus S.) is a key species in the pelagic ecosystem of the Baltic Sea. Most stocks of small pelagic species are characterized by natural, fishery-independent fluctuations, which make it difficult to predict stock development. Baltic sprat recruitment is highly variable, which can partly be related to climate-driven variability in hydrographic conditions. Results from experimental studies and field observations demonstrate that a number of important life history traits of sprat are affected by temperature, especially the survival and growth of early life stages. Projected climate-driven warming may impact important processes affecting various life stages of sprat, from survival and development during the egg and larval phases to the reproductive output of adults. This study presents a stage-based matrix model approach to simulate sprat population dynamics in relation to different climate change scenarios. Data obtained from experimental studies and field observations were used to estimate and incorporate stage-specific growth and survival rates into the model. Model-based estimates of population growth rate were affected most by changes in the transition probability of the feeding larval stage at all temperatures (+0, +2, +4, +6 °C). The maximum increase in population growth rate was expected when ambient temperature was elevated by 4 °C. Coupling our stage-based model and more complex, biophysical individual-based models may reveal the processes driving these expected climate-driven changes in Baltic Sea sprat population dynamics

    Effects of nitrate and phosphate supply on chromophoric and fluorescent dissolved organic matter in the Eastern Tropical North Atlantic: a mesocosm study

    Get PDF
    In open-ocean regions, as is the Eastern Tropical North Atlantic (ETNA), pelagic production is the main source of dissolved organic matter (DOM) and is affected by dissolved inorganic nitrogen (DIN) and phosphorus (DIP) concentrations. Changes in pelagic production under nutrient amendments were shown to also modify DOM quantity and quality. However, little information is available about the effects of nutrient variability on chromophoric (CDOM) and fluorescent (FDOM) DOM dynamics. Here we present results from two mesocosm experiments ("Varied P" and "Varied N") conducted with a natural plankton community from the ETNA, where the effects of DIP and DIN supply on DOM optical properties were studied. CDOM accumulated proportionally to phytoplankton biomass during the experiments. Spectral slope (S) decreased over time indicating accumulation of high molecular weight DOM. In Varied N, an additional CDOM portion, as a result of bacterial DOM reworking, was determined. It increased the CDOM fraction in DOC proportionally to the supplied DIN. The humic-like FDOM component (Comp.1) was produced by bacteria proportionally to DIN supply. The protein-like FDOM component (Comp.2) was released irrespectively to phytoplankton or bacterial biomass, but depended on DIP and DIN concentrations. Under high DIN supply, Comp.2 was removed by bacterial reworking, leading to an accumulation of humic-like Comp.1. No influence of nutrient availability on amino acid-like FDOM component in peptide form (Comp.3) was observed. Comp.3 potentially acted as an intermediate product during formation or degradation of Comp.2. Our findings suggest that changes in nutrient concentrations may lead to substantial responses in the quantity and quality of optically active DOM and, therefore, might bias results of the applied in situ optical techniques for an estimation of DOC concentrations in open-ocean regions

    Effects of varied nitrate and phosphate supply on polysaccharidic and proteinaceous gel particles production during tropical phytoplankton bloom experiments

    Get PDF
    Gel particles such as the polysaccharidic transparent exopolymer particles (TEP) and the proteinaceous Coomassie stainable particles (CSP) play an important role in marine biogeochemical and ecological processes like particle aggregation and export, or microbial nutrition and growth. So far, effects of nutrient availability or of changes in nutrient ratios on gel particle production and fate are not well understood. The tropical ocean includes large oxygen minimum zones, where nitrogen losses due to anaerobic microbial activity result in a lower supply of nitrate relative to phosphate to the euphotic zone. Here, we report of two series of mesocosm experiments that were conducted with natural plankton communities collected from the eastern tropical North Atlantic (ETNA) close to Cape Verde in October 2012. The experiments were performed to investigate how different phosphate (experiment 1, Varied P: 0.15–1.58 μmol L−1) or nitrate (experiment 2, Varied N: 1.9–21.9 μmol L−1) concentrations affect the abundance and size distribution of TEP and CSP. In the days until the bloom peak was reached, a positive correlation between gel particle abundance and Chl a concentration was determined, linking the release of dissolved gel precursors and the subsequent formation of gel particles to autotrophic production. After the bloom peak, gel particle abundance remained stable or even increased, implying a continued partitioning of dissolved into particulate organic matter after biomass production itself ceased. During both experiments, differences between TEP and CSP dynamics were observed; TEP were generally more abundant than CSP. Changes in size distribution indicated aggregation of TEP after the bloom, while newly formed CSP decomposed. Abundance of gel particles clearly increased with nitrate concentration during the second experiment, suggesting that changes in [DIN] : [DIP] ratios can affect gel particle formation with potential consequences for carbon and nitrogen cycling as well as food web dynamics in tropical ecosystems
    corecore