65 research outputs found

    Physical Activity Classification for Elderly People in Free Living Conditions

    Get PDF
    Physical activity is strongly linked with mental and physical health in the elderly population and accurate monitoring of activities of daily living (ADLs) can help improve quality of life and well-being. This study presents and validates an inertial sensors-based physical activity classification system developed with older adults as the target population. The dataset was collected in free living conditions without placing constraints on the way and order of performing ADLs. Four sensor locations (chest, lower back, wrist, and thigh) were explored to obtain the optimal number and combination of sensors by finding the best tradeoff between the system's performance and wearability. Several feature selection techniques were implemented on the feature set obtained from acceleration and angular velocity signals to classify four major ADLs (sitting, standing, walking, and lying). Support vector machine was used for the classification of the ADLs. The findings show the potential of different solutions (single-sensor or multi-sensor) to correctly classify the ADLs of older people in free living conditions. Considering a minimal set-up of a single sensor, the sensor worn at the L5 achieved the best performance. A two-sensor solution (L5 + thigh) achieved a better performance with respect to a single-sensor solution. On the other hand, considering more than two sensors did not provide further improvements. Finally, we evaluated the computational cost of different solutions and it was shown that a feature selection step can reduce the computational cost of the system and increase the system performance in most cases. This can be helpful for real-time applications

    Consensus based framework for digital mobility monitoring

    Get PDF
    Digital mobility assessment using wearable sensor systems has the potential to capture walking performance in a patient's natural environment. It enables monitoring of health status and disease progression and evaluation of interventions in real-world situations. In contrast to laboratory settings, real-world walking occurs in non-conventional environments and under unconstrained and uncontrolled conditions. Despite the general understanding, there is a lack of agreed definitions about what constitutes real-world walking, impeding the comparison and interpretation of the acquired data across systems and studies. The goal of this study was to obtain expert-based consensus on specific aspects of real-world walking and to provide respective definitions in a common terminological framework. An adapted Delphi method was used to obtain agreed definitions related to real-world walking. In an online survey, 162 participants from a panel of academic, clinical and industrial experts with experience in the field of gait analysis were asked for agreement on previously specified definitions. Descriptive statistics was used to evaluate whether consent (> 75% agreement as defined a priori) was reached. Of 162 experts invited to participate, 51 completed all rounds (31.5% response rate). We obtained consensus on all definitions ("Walking"> 90%, "Purposeful"> 75%, "Real-world"> 90%, "Walking bout"> 80%, "Walking speed"> 75%, "Turning"> 90% agreement) after two rounds. The identification of a consented set of realworld walking definitions has important implications for the development of assessment and analysis protocols, as well as for the reporting and comparison of digital mobility outcomes across studies and systems. The definitions will serve as a common framework for implementing digital and mobile technologies for gait assessment and are an important link for the transition from supervised to unsupervised gait assessment

    Robustness of In-Laboratory and Daily-Life Gait Speed Measures over One Year in High Functioning 61- To 70-Year-Old Adults

    Get PDF
    Introduction: Gait speed is a simple and safe measure with strong predictive value for negative health outcomes in clinical practice, yet in-laboratory gait speed seems not representative for daily-life gait speed. This study aimed to investigate the interrelation between and robustness of in-laboratory and daily-life gait speed measures over 12 months in 61- to 70-year-old adults. Methods: Gait speed was assessed in laboratory through standardized stopwatch tests and in daily life by 7 days of trunk accelerometry in the PreventIT cohort, at baseline, and after 6 and 12 months. The interrelation was investigated using Pearson's correlations between gait speed measures at each time point. For robustness, changes over time and variance components were assessed by ANOVA and measurement agreement over time by Bland-Altman analyses. Results: Included were 189 participants (median age 67 years [interquartile range: 64-68], 52.2% females). In-laboratory and daily-life gait speed measures showed low correlations (Pearson's r = 0.045-0.455) at each time point. Moreover, both in-laboratory and daily-life gait speed measures appeared robust over time, with comparable and smaller within-subject than between-subject variance (range 0.001-0.095 m/s and 0.032-0.397 m/s, respectively) and minimal differences between measurements over time (Bland-Altman) with wide limits of agreement (standard deviation of mean difference range: 0.12-0.34 m/s). Discussion/Conclusion: In-laboratory and daily-life gait speed measures show robust assessments of gait speed over 12 months and are distinct constructs in this population of high-functioning adults. This suggests that (a combination of) both measures may have added value in predicting health outcomes

    RESPOND – A patient-centred program to prevent secondary falls in older people presenting to the emergency department with a fall: Protocol for a multi-centre randomised controlled trial

    Get PDF
    Introduction: Participation in falls prevention activities by older people following presentation to the Emergency Department (ED) with a fall is suboptimal. This randomised controlled trial (RCT) will test the RESPOND program which is designed to improve older persons’ participation in falls prevention activities through delivery of patient-centred education and behaviour change strategies. Design and setting: An RCT at two tertiary referral EDs in Melbourne and Perth, Australia. Participants: Five-hundred and twenty eight community-dwelling people aged 60-90 years presenting to the ED with a fall and discharged home will be recruited. People who: require an interpreter or hands-on assistance to walk; live in residential aged care or >50 kilometres from the trial hospital; have terminal illness, cognitive impairment, documented aggressive behaviour or history of psychosis; are receiving palliative care; or are unable to use a telephone will be excluded. Methods: Participants will be randomly allocated to the RESPOND intervention or standard care control group. RESPOND incorporates: (1) home-based risk factor assessment; (2) education, coaching, goal setting, and follow-up telephone support for management of one or more of four risk factors with evidence of effective intervention; and (3) healthcare provider communication and community linkage delivered over six months. Primary outcomes are falls and fall injuries per-person-year. Discussion: RESPOND builds on prior falls prevention learnings and aims to help individuals make guided decisions about how they will manage their falls risk. Patient-centred models have been successfully trialled in chronic and cardiovascular disease however evidence to support this approach in falls prevention is limited. Trial registration. The protocol for this study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12614000336684)

    Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: A systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle fatigue reduces muscle strength and balance control in young people. It is not clear whether fatigue resistance seen in older persons leads to different effects. In order to understand whether muscle fatigue may increase fall risk in older persons, a systematic literature review aimed to summarize knowledge on the effects of lower extremity and trunk muscle fatigue on balance and functional tasks in older people was performed.</p> <p>Methods</p> <p>Studies were identified with searches of the PUBMED and SCOPUS data bases.</p> <p>Papers describing effects of lower extremity or trunk muscle fatigue protocols on balance or functional tasks in older people were included. Studies were compared with regards to study population characteristics, fatigue protocol, and balance and functional task outcomes.</p> <p>Results</p> <p>Seven out of 266 studies met the inclusion criteria. Primary findings were: fatigue via resistance exercises to lower limb and trunk muscles induces postural instability during quiet standing; induced hip, knee and ankle muscle fatigue impairs functional reach, reduces the speed and power of sit-to-stand repetitions, and produces less stable and more variable walking patterns; effects of age on degree of fatigue and rate of recovery from fatigue are inconsistent across studies, with these disparities likely due to differences in the fatigue protocols, study populations and outcome measures.</p> <p>Conclusion</p> <p>Taken together, the findings suggest that balance and functional task performance are impaired with fatigue. Future studies should assess whether fatigue is related to increased risk of falling and whether exercise interventions may decrease fatigue effects.</p

    Tailored implementation of national recommendations on fall prevention among older adults in municipalities in Norway (FALLPREVENT trial): a study protocol for a cluster-randomised trial

    Get PDF
    Background: Despite substantial research evidence indicating the effectiveness of a range of interventions to pre- vent falls, uptake into routine clinical practice has been limited by several implementation challenges. The complexity of fall prevention in municipality health care underlines the importance of flexible implementation strategies tailored both to general determinants of fall prevention and to local contexts. This cluster-randomised trial (RCT) investigates the effectiveness of a tailored intervention to implement national recommendations on fall prevention among older home-dwelling adults compared to usual practice on adherence to the recommendations in health professionals.Methods: Twenty-five municipalities from four regions in Norway will be randomised to intervention or control arms. Each municipality cluster will recruit up to 30 health professionals to participate in the study as responders. The tailored implementation intervention comprises four components: (1) identifying local structures for implementation, (2) establishing a resource team from different professions and levels, (3) promoting knowledge on implementation and fall prevention and (4) supporting the implementation process. Each of these components includes several implementation activities. The Consolidated Framework for Implementation Research (CFIR) will be used to categorise determinants of the implementation process and the Expert Recommendations for Implementing Change (ERIC) will guide the matching of barriers to implementation strategies. The primary outcome measure for the study will be health professionals’ adherence to the national recommendations on fall prevention measured by a questionnaire. Secondary outcomes include injurious falls, the feasibility of the intervention, the experiences of the implementation process and intervention costs. Measurements will be carried out at baseline in August 2023, post-intervention in May 2024 and at a follow-up in November 2024.Discussion: This study will provide evidence on the effectiveness, intervention costs and underlying processes of change of tailored implementation of evidence-based fall prevention recommendations.Trial registration: The trial is registered in the Open Science Registry: https://doi.org/10.17605/OSF.IO/JQ9T5. Regis- tered: March 03, 2023.<br/

    Consensus based framework for digital mobility monitoring

    Get PDF
    Digital mobility assessment using wearable sensor systems has the potential to capture walking performance in a patient’s natural environment. It enables monitoring of health status and disease progression and evaluation of interventions in real-world situations. In contrast to laboratory settings, real-world walking occurs in non-conventional environments and under unconstrained and uncontrolled conditions. Despite the general understanding, there is a lack of agreed definitions about what constitutes real-world walking, impeding the comparison and interpretation of the acquired data across systems and studies. The goal of this study was to obtain expert-based consensus on specific aspects of real-world walking and to provide respective definitions in a common terminological framework. An adapted Delphi method was used to obtain agreed definitions related to real-world walking. In an online survey, 162 participants from a panel of academic, clinical and industrial experts with experience in the field of gait analysis were asked for agreement on previously specified definitions. Descriptive statistics was used to evaluate whether consent (> 75% agreement as defined a priori) was reached. Of 162 experts invited to participate, 51 completed all rounds (31.5% response rate). We obtained consensus on all definitions (“Walking” > 90%, “Purposeful” > 75%, “Real-world” > 90%, “Walking bout” > 80%, “Walking speed” > 75%, “Turning” > 90% agreement) after two rounds. The identification of a consented set of real-world walking definitions has important implications for the development of assessment and analysis protocols, as well as for the reporting and comparison of digital mobility outcomes across studies and systems. The definitions will serve as a common framework for implementing digital and mobile technologies for gait assessment and are an important link for the transition from supervised to unsupervised gait assessment
    • …
    corecore