899 research outputs found

    First-principles approach to noncollinear magnetism: Towards spin dynamics

    Get PDF
    A description of noncollinear magnetism in the framework of spin-density functional theory is presented for the exact exchange energy functional which depends explicitly on two-component spinor orbitals. The equations for the effective Kohn-Sham scalar potential and magnetic field are derived within the optimized effective potential (OEP) framework. With the example of a magnetically frustrated Cr monolayer it is shown that the resulting magnetization density exhibits much more noncollinear structure than standard calculations. Furthermore, a time-dependent generalization of the noncollinear OEP method is well suited for an ab initio description of spin dynamics. We also show that the magnetic moments of solids Fe, Co, and Ni are well reproduced

    Time-dependent natural orbitals and occupation numbers

    Full text link
    We report equations of motion for the occupation numbers of natural spin orbitals and show that adiabatic extensions of common functionals employed in ground-state reduced-density-matrix-functional theory have the shortcoming of leading always to occupation numbers which are independent of time. We illustrate the exact time-dependence of the natural spin orbitals and occupation numbers for the case of electron-ion scattering and for atoms in strong laser fields. In the latter case, we observe strong variations of the occupation numbers in time.Comment: 5 pages, 5 figure

    Viperin is an important host restriction factor in control of Zika virus infection

    Get PDF
    Published online 30 June 2017Zika virus (ZIKV) infection has emerged as a global health threat and infection of pregnant women causes intrauterine growth restriction, spontaneous abortion and microcephaly in newborns. Here we show using biologically relevant cells of neural and placental origin that following ZIKV infection, there is attenuation of the cellular innate response characterised by reduced expression of IFN-ÎČ and associated interferon stimulated genes (ISGs). One such ISG is viperin that has well documented antiviral activity against a wide range of viruses. Expression of viperin in cultured cells resulted in significant impairment of ZIKV replication, while MEFs derived from CRISPR/Cas9 derived viperin-/- mice replicated ZIKV to higher titers compared to their WT counterparts. These results suggest that ZIKV can attenuate ISG expression to avoid the cellular antiviral innate response, thus allowing the virus to replicate unchecked. Moreover, we have identified that the ISG viperin has significant anti-ZIKV activity. Further understanding of how ZIKV perturbs the ISG response and the molecular mechanisms utilised by viperin to suppress ZIKV replication will aid in our understanding of ZIKV biology, pathogenesis and possible design of novel antiviral strategies.Kylie H. Van der Hoek, Nicholas S. Eyre, Byron Shue, Onruedee Khantisitthiporn, Kittirat Glab-Ampi, Jillian M. Carr, Matthew J. Gartner, Lachlan A. Jolly, Paul Q. Thomas, Fatwa Adikusuma, Tanja Jankovic-Karasoulos, Claire T. Roberts, Karla J. Helbig and Michael R. Bear

    Differential effects of familial Alzheimer’s disease-causing mutations on amyloid precursor protein (APP) trafficking, proteolytic conversion, and synaptogenic activity

    Get PDF
    The amyloid precursor protein (APP) is a key player in Alzheimer`s disease (AD) and the precursor of the AÎČ peptide, which is generated by consecutive cleavages of ÎČ- and Îł-secretases. Familial Alzheimer’s disease (FAD) describes a hereditary subgroup of AD that represents a low percentage of AD cases with an early onset of the disease. Different APP FAD mutations are thought to have qualitatively different effects on its proteolytic conversion. However, few studies have explored the pathogenic and putative physiological differences in more detail. Here, we compared different FAD mutations, located at the ÎČ- (Swedish), α- (Flemish, Arctic, Iowa) or Îł-secretase (Iberian) cleavage sites. We examined heterologous expression of APP WT and FAD mutants in non-neuronal cells and their impact on presynaptic differentiation in contacting axons of co-cultured neurons. To decipher the underlying molecular mechanism, we tested the subcellular localization, the endocytosis rate and the proteolytic processing in detail by immunoprecipitation–mass spectrometry. Interestingly, we found that only the Iberian mutation showed altered synaptogenic function. Furthermore, the APP Iowa mutant shows significantly decreased α-secretase processing which is in line with our results that APP carrying the Iowa mutation was significantly increased in early endosomes. However, most interestingly, immunoprecipitation–mass spectrometry analysis revealed that the amino acid substitutions of APP FAD mutants have a decisive impact on their processing reflected in altered AÎČ profiles. Importantly, N-terminally truncated AÎČ peptides starting at position 5 were detected preferentially for APP Flemish, Arctic, and Iowa mutants containing amino acid substitutions around the α-secretase cleavage site. The strongest change in the ratio of AÎČ40/AÎČ42 was observed for the Iberian mutation while APP Swedish showed a substantial increase in AÎČ1–17 peptides. Together, our data indicate that familial AD mutations located at the α-, ÎČ-, and Îł-secretase cleavage sites show considerable differences in the underlying pathogenic mechanisms

    The ClinGen Epilepsy Gene Curation Expert Panel—Bridging the divide between clinical domain knowledge and formal gene curation criteria

    Get PDF
    The field of epilepsy genetics is advancing rapidly and epilepsy is emerging as a frequent indication for diagnostic genetic testing. Within the larger ClinGen framework, the ClinGen Epilepsy Gene Curation Expert Panel is tasked with connecting two increasingly separate fields: the domain of traditional clinical epileptology, with its own established language and classification criteria, and the rapidly evolving area of diagnostic genetic testing that adheres to formal criteria for gene and variant curation. We identify critical components unique to the epilepsy gene curation effort, including: (a) precise phenotype definitions within existing disease and phenotype ontologies; (b) consideration of when epilepsy should be curated as a distinct disease entity; (c) strategies for gene selection; and (d) emerging rules for evaluating functional models for seizure disorders. Given that de novo variants play a prominent role in many of the epilepsies, sufficient genetic evidence is often awarded early in the curation process. Therefore, the emphasis of gene curation is frequently shifted toward an iterative precuration process to better capture phenotypic associations. We demonstrate that within the spectrum of neurodevelopmental disorders, gene curation for epilepsy-associated genes is feasible and suggest epilepsy-specific conventions, laying the groundwork for a curation process of all major epilepsy-associated genes

    Investigation of sphingosine kinase 1 in interferon responses during dengue virus infection

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Dengue virus (DENV) regulates sphingosine kinase (SK)-1 activity and chemical inhibition of SK1 reduces DENV infection. In primary murine embryonic fibroblasts (pMEFs) lacking SK1 however, DENV infection is enhanced and this is associated with induction of normal levels of interferon beta (IFN-ÎČ) but reduced levels of IFN-stimulated genes (ISGs). We have further investigated this link between SK1 and type I IFN responses. DENV infection downregulates cell-surface IFN-alpha receptor (IFNAR)1 in both wild-type (WT) and SK1−/− pMEF, but, consistent with poor ISG responses, shows reduced induction of phosphorylated (p)-STAT1 and key IFN regulatory factors (IRF)1 and −7 in SK1−/− pMEF. Direct IFN stimulation induced ISGs (viperin, IFIT1), CXCL10, IRF1 and −7 and p-STAT1. Responses, however, were significantly reduced in SK1−/− pMEF, except for IFN-stimulated CXCL10 and IRF7. Poor IFN responses in SK1−/− pMEF were associated with a small reduction in basal cell-surface IFNAR1 and IRF1 mRNA in uninfected SK1−/− compared with WT pMEF. In contrast, treatment of cells with the SK1 inhibitor, SK1-I or expression of an inhibitory SK1 short hairpin RNA (shRNA), both of which reduce DENV infection, does not alter basal IRF1 mRNA or affect type I IFN stimulation of p-STAT1. Thus, cells genetically lacking SK1 can induce many responses normally following DENV infection, but have adaptive changes in IFNAR1 and IRF1 that compromise DENV-induced type I IFN responses. This suggests a biological link between SK1 and IFN-stimulated pathways. Other approaches to reduce SK1 activity, however, do not influence these important antiviral pathways but reduce infection and may be useful antiviral strategies

    How Russian Rap on YouTube Advances Alternative Political Deliberation: Hegemony, Counter- Hegemony, and Emerging Resistant Publics

    Get PDF
    The late 2010s have seen the unprecedented rise of Russian rap culture on YouTube. This study delves into the unexplored area of the relationship between rap music, politics, and the Internet audience in Russia. It focuses on the analysis of the production of the most popular rap videos—their narratives, power relations, and socio-political themes, as well as the prevailing patterns in the discussion on socio-political issues by the YouTube audience. The study brings three contributions that identify the power relations in the Russian society that manifest in the field of rap music. First, the Russian-speaking users demonstrate a high level of criticality toward the pro-Kremlin rap music on YouTube and challenge the lies of propaganda rap. Second, pro-government rappers follow the Soviet authoritarian ethos and praise belonging to the collective of elites, while liberal ones adhere to the individual responsibility. Third, we demonstrate the prevalence of patriarchal gender values, including macho politics and unquestioned sexism, which are representative of gender politics in the country. This article proves the importance of socio-political commentary on YouTube and points to the rap videos as the popular hubs for the socio-political debates. Users flow to rap videos and utilize the comment section to have their say on the political context and power relations rather than the music, to engage with others, and to contribute to the emerging collective debate. The comment sections on these rap videos have a unique value for the Russian users who exploit them as the negotiation space in the void of other platforms for social dialogue in Russia

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface

    Properties of cosmologies with dynamical pseudo Nambu-Goldstone bosons

    Get PDF
    We study observational constraints on cosmological models with a quintessence field in the form of a dynamical pseudo Nambu-Goldstone boson. After reviewing the properties of the solutions, from a dynamical systems phase space analysis, we consider the constraints on parameter values imposed by luminosity distances from the 60 Type Ia supernovae published by Perlmutter et al., and also from gravitational lensing statistics of distant quasars. In the case of the Type Ia supernovae we explicitly allow for the possibility of evolution of the peak luminosities of the supernovae sources, using simple empirical models which have been recently discussed in the literature. We find weak evidence to suggest that the models with supernovae evolution fit the data better in the context of the quintessence models in question. If source evolution is a reality then the greatest challenge facing these models is the tension between current value of the expansion age, H_0 t_0, and the fraction of the critical energy density, Omega_{phi0}, corresponding to the scalar field. Nonetheless there are ranges of the free parameters which fit all available cosmological data.Comment: 22 pages, RevTeX, 13 figures, epsf. v3: References added, plus a few sentences to clarify some small points; v4: Typos fixe
    • 

    corecore