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PHYSICAL REVIEW D, VOLUME 63, 023503
Properties of cosmologies with dynamical pseudo Nambu-Goldstone bosons

S. C. Cindy Ng* and David L. Wiltshire†

Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, S.A. 5005, Australia
~Received 12 April 2000; published 18 December 2000!

We study observational constraints on cosmological models with a quintessence field in the form of a
dynamical pseudo Nambu-Goldstone boson. After reviewing the properties of the solutions, from a dynamical
systems phase space analysis, we consider the constraints on parameter values imposed by luminosity distances
from the 60 type Ia supernovae published by Perlmutteret al., and also from gravitational lensing statistics of
distant quasars. In the case of the type Ia supernovae we explicitly allow for the possibility of evolution of the
peak luminosities of the supernovae sources, using simple empirical models which have been recently dis-
cussed in the literature. We find weak evidence to suggest that the models with supernovae evolution fit the
data better in the context of the quintessence models in question. If source evolution is a reality then the
greatest challenge facing these models is the tension between the current value of the expansion age,H0t0, and
the fraction of the critical energy density,Vf0, corresponding to the scalar field. Nonetheless there are ranges
of the free parameters which fit all available cosmological data.

DOI: 10.1103/PhysRevD.63.023503 PACS number~s!: 98.80.Cq, 95.35.1d, 98.80.Es
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I. INTRODUCTION

Scalar fields have played a central role in models of
very early universe for the past 20 years. In the past
years attention has turned to models in which a scalar fi
plays a dynamical role at late times, rather than simply be
frozen in as a static relic vacuum energy. Such mod
which have been dubbed ‘‘quintessence’’ models@1#, could
in principle provide a dynamical solution to the cosmologic
constant problem—namely the question of why the mag
tude of the vacuum energy at the present epoch is so m
smaller than one might naively expect from particle phys
models such as various supergravity theories. A dynam
‘‘solution’’ of the cosmological constant problem woul
amount to a demonstration that a particular dynamical e
lution of the scalar quintessence field is a natural con
quence of the cosmological field equations without fin
tuning of parameters, given some reasonable phys
assumptions about the initial conditions.

The most notable recent observational evidence which
driven the theoretical interest is the measurement of the
parent magnitude-redshift relationship using type Ia supe
vae ~SNe Ia! @2#. These results have been interpreted, in
context of a cosmological model containing pressureless
and a cosmological constantL, as evidence that the univers
is undergoing accelerated expansion at the present epoch~see
@3,4# and references therein!. The validity of this conclusion
is currently open to some doubt, however. In particular
recent analysis by Riesset al. @5# indicates that the sample o
type Ia supernovae shows a possible evolution in rise tim
from moderate (z;0.3) to large (z;1) redshifts. Although
the statistical significance of this result has be
diminished—from the 5.8s level @5# to the 1.5s level
@6#—upon a more rigorous treatment of the uncertainties
the data@6#, it remains true that while a systematic evolutio
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in the rise times of the supernovae is not conclusively ru
in, neither is it conclusively ruled out.

Given that an evolution in the shape of the light curves
the supernovae measured in their rest frame remains a
possibility, it would not be surprising if the pea
luminosity—which is the effective standard candle used
were also to evolve. Riesset al. @5# conclude that the type Ia
supernovae data could conceivably be explained enti
within the context of an open Friedmann-Robertson-Wal
universe together with a reasonable astrophysical evolu
model, e.g., a consequence of a time variation of the ab
dances of relevant heavy elements in the environment of
white dwarf supernovae progenitors. Detailed astrophys
modeling—see, e.g.,@7#—should hopefully eventually re
solve the issue, although at this stage the difference betw
our theoretical understanding and the observations rem
quite substantial@8#.

In many recent papers it has been commonly assumed
the dynamical scalar field,f, should obey an effective equa
tion of statePf.wrf with 21,w,0, at the present ep
och, in order to obtain a cosmological acceleration, i.e.
negative deceleration parameterq0. Indeed, the condition
that 21,w,0 is often taken as a defining characteristic
‘‘quintessence’’@1#. The broad picture in this cosmologica
scenario is that the universe is currently in the early stage
an epoch of inflationary expansion. The motivation for this
that one could then hope to have a model cosmology
which observations such as the type Ia supernovae appa
magnitude-redshift relation could be explained by a cosm
logical acceleration in a similar fashion to models with
cosmological constant, but with the possibility of explainin
why the magnitude of the vacuum energy density and
energy density in ordinary pressureless matter,rm , are com-
parable at the present epoch—the so-called ‘‘cosmic coi
dence problem’’@9#.

One attractive feature of homogeneous isotropic cosm
logical models with dynamical scalar fields is that many
them possess ‘‘cosmological scaling solutions’’@10#, namely
solutions which at late times have energy density com
©2000 The American Physical Society03-1
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S. C. CINDY NG AND DAVID L. WILTSHIRE PHYSICAL REVIEW D 63 023503
nents which depend on the cosmic scale factor accordin
r}a2m1 andrf}a2m2 simultaneously, and which act as a
tractors in the phase space. Ifm2,m1, which is the case, for
example, for simple power-law potentials with inverse po
ers @11,12# V(f)}f2a, or for certain power-law potential
with positive powers@10#, then the scalar field dominates
late times, producing a quintessence-dominated cosmo
with accelerated expansion at late times. Ifm15m2, which is
the case for exponential potentials@13–20#, then the scaling
solutions are ‘‘self-tuning’’@16#—i.e., the dynamics of the
scalar field follows that of the other dominant energy co
ponent, with a dependencerf}a24 in the radiation-
dominated era and a dependencerf}a23 in the matter-
dominated era.

Even if the ultimate late-time properties of the solutio
are not precisely ‘‘self-tuning’’ in the above sense, mod
such as those with inverse power law potentials can
effectively act as ‘‘tracking solutions,’’ since for a wid
range of initial conditions, the solutions rapidly converge
a common, cosmic evolutionary track@12#. Thus there are a
number of ways in which one might hope to solve the ‘‘co
mic coincidence problem,’’ though in practice a degree
tuning of the parameters has been necessary in all mo
studied to date.

In this paper, we consider a form of quintessence,
ultra-light pseudo Nambu-Goldstone boson~PNGB! @21#
which is still relaxing to its vacuum state. From the view
point of quantum field theory PNGB models are the simpl
way to have naturally ultra-low mass, spin-0 particles a
hence perhaps the most natural candidate for a presently
isting minimally coupled scalar field. The effective potent
of a PNGB fieldf can be taken to be of the form@22#

V~f!5M4@cos~f/ f !11#, ~1!

where the constant term is to ensure that the vacuum en
vanishes at the minimum of the potential. This potentia
characterized by two mass scales, a purely spontaneous
metry breaking scalef and an explicit symmetry breakin
scaleM.

The effective PNGB mass ismf;M2/ f . To obtain solu-
tions withVf;1, the energy scales are essentially fixed@21#
to valuesM;1023 eV, interestingly close to the neutrin
mass scale for the Mikheyev-Smirnov-Wolfenstein~MSW!
solution to the solar neutrino problem, andf ;mPl
.1019 GeV, the Planck scale. Since these two energy sc
have values which are reasonable from the viewpoint of p
ticle physics, one might hope to explain the coincidence t
the vacuum energy is dynamically important at the pres
epoch.

The cosmology of PNGB models has already been ex
sively studied in the literature@17,18,20,22–24#. In particu-
lar, a number of constraints have been placed on the pa
eters M and f by various sets of observational da
@17,18,23,24#. Most recently, Frieman and Waga@24# have
set bounds based on the SNe Ia data of Riesset al. @4# ~here-
after R98! on the one hand, and gravitational lensing surve
on the other. Comparing these bounds is of interest, since
Sn Ia data have been interpreted as favoring a cosmolog
02350
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constant, whereas gravitational lensing data has been us
place upper bounds onL @25–27#. They therefore provide
complementary tests of the parameter spaces of models
a non-trivial vacuum energy.

In this paper it is our intention to critically study thes
bounds. First, we will consider how the bounds are affec
by the initial value of the scalar field at the beginning of t
matter-dominated epoch. Secondly, we wish to investig
how such bounds might be affected in the case of the PN
model if the observed apparent faintness of type Ia supe
vae is at least partly due to an intrinsic evolution of t
sources over cosmological time scales, which in view of
results of@5# would appear to be a very real possibility. Th
reason for focusing on the PNGB models in such an inv
tigation is suggested by the fact that whereas many quin
sence models have been singled out in the literature, per
somewhat artificially, simply because they have the prope
of yielding an accelerated expansion, many different po
bilities arise in the PNGB case. Indeed, at very late times,
apparent magnitude-redshift relation for PNGB models u
mately coincides with that of the Einstein–de Sitter mod
even though the density of ordinary matter can be low in
PNGB cosmologies. The requirement that the faintness
type Ia supernovae is entirely due to their cosmological d
tances places rather strong restrictions on the values of
parametersM andf @24#, because it requires us to exist at a
epoch of the PNGB cosmologies which is still quite far r
moved from our ultimate destiny. If these restrictions a
relaxed because of evolutionary effects, then it is quite pl
sible that other regions of the parameter space of the PN
models become viable alternatives. Since PNGB cosm
gies could therefore still solve the ‘‘missing energy pro
lem,’’ even if the evidence for a cosmological accelerati
proves to be ephemeral, we believe it is important to inv
tigate this possibility quantitatively.

We will begin the paper with a qualitative analysis of th
solutions, to provide some general insights which will he
to guide our quantitative discussion. Although these prop
ties are no doubt already known, to the best of our kno
edge an analysis of the phase space of the solutions has n
been presented in the literature. Having completed
analysis in Sec. II we will go on to discuss a number
issues relating to numerical integration in Sec. III, and rel
the properties of the solutions found numerically to the ex
analysis of Sec. II. In Sec. IV we present the main analysis
the constraints imposed on the (M , f ) parameter space, al
lowing for the possibility of evolution of peak luminosities i
the type Ia supernova sources. Bounds from gravitatio
lensing statistics are updated in Sec. V, and the implicati
of our results are discussed at greater length in Sec. VI.

II. PHASE-SPACE ANALYSIS

We will begin by performing an analysis of the differen
tial equations governing the cosmological evolution in
manner similar to previous studies in inflationary and qui
essential models@10,14,15,19,20#.

The classical action for gravity coupled to a scalar fieldf
has the form
3-2
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S5E d4xA2gF S R

2k2 2
1

2
gmn]mf]nf2V~f! D1LG ,

~2!

where k is the Planck constant,R is the Ricci scalar,g
[detgmn , andL is the Lagrangian density of non-relativist
matter and radiation. For simplicity, we assumef is mini-
mally coupled to the curvature, and we work in units
which \5c51.

Consider a spatially flat Friedmann-Robertson-Wal
~FRW! universe containing a fluid with barotropic equatio
of state Pg5(g21)rg , where g is a constant, 0<g<2,
such as radiation (g54/3) or dust (g51). There is a self-
interacting scalar field with the PNGB potential energy de
sity ~1! evolving in this universe. The total energy density
this homogeneous scalar field isrf5ḟ2/21V(f). The gov-
erning equations are given by

Ḣ52
k2

2
~rg1Pg1ḟ2!, ~3!

ṙg523H~rg1Pg!, ~4!

f̈523Hḟ2
dV

df
, ~5!

subject to the Friedmann constraint

H25
k2

3 S rg1
1

2
ḟ21VD , ~6!

wherek2[8pG, H5ȧ/a is the Hubble parameter, and a
overdot denotes ordinary differentiation with respect to ti
t.

We may rewrite the Friedmann constraint as

Vg1Vf51 ~7!

where

Vg5
k2rg

3H2 , ~8!

Vf5
k2

3H2S 1

2
ḟ21VD ~9!

are the ratios of the energy densities of the barotropic ma
and the quintessence field as fraction of the critical den
respectively.

In contrast to the case of the cosmologies with an ex
nential potential@14,15,19# where the dynamics can be re
duced to a 2-dimensional autonomous phase plane, for
system ~3!–~6! the simplest phase space appears to
3-dimensional in the full four-dimensional phase space.

There are two alternative choices of variables which
useful to describe the dynamics, which we will discuss
turn.
02350
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A. Field variables

The first choice is to simply use the Hubble parameter,
the scalar field and its first derivative as the elementary v
ables. These are of course simply the variableu,v,w of Fri-
eman and Waga@18# up to an overall scaling. By defining

I[
f

f
5

kf

F ; J[kḟ; ~10!

we therefore obtain the system

Ḣ52
3g

2
H21

gm2

2
~cosI 11!2

~22g!

4
J2, ~11!

İ 5
J

F , ~12!

J̇523HJ1
m2

F sinI , ~13!

where for notational simplicity we definem25k2M4, and
F5k f , so thatF is dimensionless, whilem has dimensions
inverse time. The constraint equation becomes

k2rg53H22m2~cosI 11!2
1

2
J2. ~14!

From Eq.~4!, it follows that ṙg50 if rg50. Therefore tra-
jectories do not cross the 2-dimensionalrg50 surface,
which is a hyperboloid in the variablesH, cos(I/2), andJ.
Physical trajectories withrg.0 are forced to lie within the
volume of theH,I ,J phase space bounded by therg50
surface.

The only critical points of the system~11!–~13! at finite
values ofH,I ,J occur at

~1! C16 at H56H1 , I 50 mod 2p, J50; and
~2! C2 at H50, I 5p mod 2p, J50, where

H1[A2

3
m. ~15!

Both of these points in fact lie on therg50 surface. Fur-
thermore, this surface intersects theH50 plane only at the
isolated points C2. The H.0 andH,0 subspaces are thu
physically distinct, and theH,0 subspace simply corre
sponds to the time-reversal of theH.0 subspace. Therefor
we can takeH.0 without loss of generality.

The pattern of trajectories close to therg50 surface can
be ascertained by continuity to therg50 solutions, even
though the latter are not physical. Therg50 subspace is
obtained, for example, by regarding Eq.~14! as a quadratic
equation for H, and using the solution to eliminateH,
thereby obtaining a 2-dimensional system forI and J given
by Eqs.~12! and ~13!.

We plot the resultingH.0 pattern of trajectories in Fig. 1
for values ofI P@0,2p). Since the potential,V(f), is peri-
odic the same pattern of trajectories repeats itself as we
3-3
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S. C. CINDY NG AND DAVID L. WILTSHIRE PHYSICAL REVIEW D 63 023503
tend I to 6`, with trajectories crossing from one ‘‘cell’’ to
another at the cell boundaries.

The trajectories which occupy the lower half of Fig. 1 a
obtained from those in the upper half by the symmetryI
→2p2I , J→2J of the differential equations~11!–~14!.
Physically this simply corresponds to the scalar field rolli
from the maximum to the right of the minimum as oppos
to the one to the left.

An analysis of small perturbations about the critical poi
C1 and C2 yield eigenvalues

~1! l52A6mg,2 1
2 m(A66A614/F 2) at C11 ,

~2! l50,6 im/F at C2.
Thus C11 attracts a two-dimensional bunch of trajectori

but is a saddle point with respect to trajectories lying in
rg50 surface, as is evident from Fig. 1. The 2-dimensio
bunch of trajectories which approach C11 are found to cor-
respond to an inflationary solution witha}exp(A2/3mt) as
t→` and f→const52npF, nP Z. The possible role of
scalar fields with PNGB potentials in driving an inflationa
expansion of the early universe has been discussed in@28#.

The point C2 is a degenerate case, in particular with r
gard to perturbations orthogonal to therg50 surface~i.e.
into the surfacerg.0 region!, for which the eigenvalue is
zero. It is a center with respect to the trajectories lying in
rg50 surface, and when perturbations of higher order
considered it becomes a stable spiral point in therg50 sur-
face as can be seen in Fig. 1. Since there is a degene
however, an alternative choice of phase space variable
desirable. We will defer a discussion of the late time beh
ior of the solution near C2 to Sec. II B.

The points C16 correspond to models with a scalar fie
sitting at the maximum of the potential, whereas C2 corre-
sponds to the scalar field sitting at the bottom of the poten
well. The separatrices in Fig. 1 which join C16 to C2 corre-
spond to the field rolling from the maximum to the min
mum. It would appear from Fig. 1 that trajectories whi
spiral into C2 become arbitrarily close to the separatrix
late times.

The separatrices which join the points C16 to points at

FIG. 1. The projection of the trajectories within therg50 sub-
space on theI –J plane for values ofI P@0,2p). Within this sub-
space, C11 is a saddle point and C2 is a stable spiral.
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infinity correspond to solutions for which the scalar fie
reaches the top of the potential hill ast→6` ~e.g., the right-
most trajectory in Fig. 1!. Finally, there are also straight lin
separatrices parallel to theH-axis at each of the points C16 ,
extending fromH56H1 to infinity, which represent solu-
tions with a static scalar field sitting on top of the potent
hill.

To examine the critical points at infinity it is convenie
to transform to spherical polar coordinatesr , u, andf by
defining

H5r cosu, ~16!

I 5r sinu sinf, ~17!

J5r sinu cosf, ~18!

and to bring the sphere at infinity to a finite distance from
origin by the transformationr 5r/(12r), 0<r<1 @29#.

Although the trajectories on the sphere at infinity do n
represent physical cosmologies, it is useful to plot them si
the form of the trajectories which lie just within the sphe
will be similar. On the spherer51 we find

du

dj
5sinu cos2 uF3 sin2 f1

22g

4
~ tan2 u cos2 f26!G ,

~19!

df

dj
5

3

2
cosu sin 2f, ~20!

wherej is a new time coordinate defined bydj5rdt. The
resulting integral curves are plotted in Fig. 2. By Eq.~14! the
projection of the physical regionrg.0 onto the sphere a
infinity leads to the condition

cot2 u.
1

6
cos2 f. ~21!

Values ofu and f which violate this inequality lie in the
shaded region.

The critical points on the sphere at infinity are
~1! A16

` , A26
` : four points at

(u,f)P$(6tan21 A6,0),(6tan21 A6,p)% or
H56`, I /H50, andJ/H56A6.

FIG. 2. The projection of trajectories within the sphere at infi
ity on thef –u plane. The unphysical region is shaded.
3-4
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PROPERTIES OF COSMOLOGIES WITH DYNAMICAL . . . PHYSICAL REVIEW D63 023503
~2! B6
` : two points at

H56`, I /H50, andJ/H50.
Since the projection onto spherical polar coordina

~16!–~18! is degenerate at the north and south polesu
50,p, these points are excluded from the chart (u,f) but
can be included using an alternative hemispherical projec
~see Fig. 3!.

~3! C1,2
` : two points at

(u,f)P$(p/2,p/2),(p/2,3p/2)% or
I 56`, H/I 50, andJ/I 50.
An analysis of small perturbations shows that the poi

A11,21
` are repellors in all directions of the phase space~cf.

Table I!, while A12,22
` are attractors. This therefore repr

sents the most ‘‘typical’’ early behavior of solutions. ForH
.0, A11,21

` correspond to the limitt→0. We find thatH
;1/(3t) or a}t1/3, while kf;6A2/3lnt, for these solu-
tions. The points A12,22

` with H,0 represent the time
reversed solutions.

The point B1
` (B2

` ) repels ~attracts! a 2-dimensional
bunch of trajectories traveling to~from! finite values of
H,I ,J, but is a saddle point with respect to directions on
sphere at infinity. The points are found to correspond tt
→0 with H;2/(3gt) or a}t2/3g while kf}tn, n.0.

The points C1,2
` are the projection of the points C16 and

C2 into the sphere at infinity. The degenerate eigenval
simply reflect the degeneracy of the projection.

B1
` acts as a repellor for trajectories withḟ.0, f

.const ast→0. As shown in Fig. 3, trajectories are drive
towards B1

` before they reach C1
` . This is consistent with the

property that whenH is large (3H>mf), the field evolution
is over-damped by the expansion, and the field is effectiv
frozen to its initial value (ḟ→0).

FIG. 3. The projection of trajectories within theI .0 andI ,0
hemispheres at infinity on theH –J plane. The unphysical region i
shaded.

TABLE I. The critical points on the sphere at infinity and the
eigenvalues.

Critical points Eigenvalues~with degeneracies!

A16
` ,A26

` 63 ~2!, 63(22g)

B6
`

6
3g

2
~2!, 7

3
2

(22g)

C1,2
` 0 ~3!
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B. Energy density variables

In view of the eigenvalue degeneracy encountered abo
we can alternatively choose to represent the system by
variablesH, x, andy, where

x[
kḟ

A6H
5

J

A6H
, ~22!

y[
kAV

A3H
5

A2m cos~ I /2!

A3H
. ~23!

These are the same variables used by Copeland, Liddle
Wands@19# for the model with an exponential potential. A
above, we will considerH.0 only. The field equations then
take the form

Ḣ52
3

2
H2m, ~24!

ẋ56
my

F A12
3y2H2

2m2 1
3

2
Hx~m22!, ~25!

ẏ57
mx

F A12
3y2H2

2m2 1
3

2
Hym, ~26!

where

m~x,y![g~12y2!1~22g!x2. ~27!

We note that in these variables

x21y25Vf ~28!

which is why we have adopted the terminology ‘‘energy de
sity variables.’’ The physical region of the phase space w
be constrained to lie within the cylinderx21y2<1 since
Vf<1. In the case of the exponential potential analyzed
Ref. @19#, one of the differential equations decoupled, a
the dynamics was effectively described by a phase pl
with trajectories bounded by the circlex21y251. In the
present case, however, no such simplification arises.

The physical region of phase space is further restricted
the requirement thaty2< 2

3 m2/H2[H1
2/H2, which is equiva-

lent to cos2(I/2)<1 in terms of the field variables. For value
of H.H1 eachH5const slice of the cylinderx21y2<1 is
cut off in the y-direction above and below they56H1 /H
lines. Thus the ‘‘fundamental cell’’ of the phase space can
considered to be a cylinder for 0<H<H1, capped by a horn
for H.H1, which tapers off to a line segment21<x<1 on
the x-axis asH→` ~see Fig. 4!. In fact, the phase spac
consists of an infinite number of copies of the fundamen
cell of Fig. 4 as a result of the periodic structure of t
potential. These cells,Cn , can be labeled by an integer,n,
with the variableI lying in the range 2np<I ,2(n11)p
for eachn. For cells with evenn the dynamics is describe
by Eqs.~24!–~27! with the upper sign in Eqs.~25! and~26!,
while for oddn one must take the lower sign.
3-5
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Within the horn portion of each phase space cell the m
tion of most trajectories is roughly circular inH5const
slices, in a clockwise sense in even cells,C2n , and anti-
clockwise in odd cellsC2n11. However, trajectories can cros
from one cell to another along they56H1 /H boundaries of
their horns, which correspond to the surfacesI 52np in
terms of the field variables. For even cells,C2n , trajectories
join the cell C2n along they5H1 /H surface and the cel
C2n11 along the y52H1 /H surface. Below theH5H1
plane solutions cannot cross from one cell to another,
remain confined within the cylinderx21y2<1.

When H50 we see from Eqs.~24!–~27! that ẋ5my/F
and ẏ52mx/F, so that trajectories which lie in theH50
surface are purely concentric circles. Sinceȧ50 in the H
50 plane, these do not represent physically interesting c
mologies, but by continuity the behavior of the trajector
just above the plane will be of a spiral nature.

The originH5x5y50 is in fact the critical point corre-
sponding to C2. The nature of the critical point is altered b
the change of variables, however. In particular, whereas
eigenvalues for linear perturbations are unchanged, w
higher order corrections are considered the point is no lon
always an asymptotically stable spiral as was the case in
1.

Asymptotically ast→` we have

x5A~ t !sin
mt

F , ~29!

y5A~ t !cos
mt

F , ~30!

FIG. 4. The ‘‘fundamental cell’’ of the phase space in terms
the energy density variables. On they25H1

2/H2 planes~the shaded
planes!, only one trajectory is possible as shown. It correspond
the scalar field lying on top of the potential hill all along. On th
H50 plane, the trajectories are concentric circles with center at
origin.
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where the amplitude is governed by the equation

d

dt
~A2!53HA2S g22 sin2

mt

F D ~12A2!. ~31!

The nature of C2 is now found to depend ong:
~1! If g,1 we find that over a cycle the average value

the right-hand side~rhs! of Eq. ~31! is negative andA2 de-
creases so that C2 is an asymptotically stable spiral. Furthe
more to leading orderH;2/(3gt) as t→` or a}t2/3g and
A(t) is given by

A~ t !5Bt(g21)/gexpF2
1

gEt

`dt8

t8
cosS mt8

F D G ~32!

with B constant. The late-time attractor hasVf50 andVg
51.

~2! If g.1 then over a cycle the average value of the
of Eq. ~31! is positive andA2 increases until it reaches
limit cycle A251, i.e.x21y251 or Vf51, Vg50. In this
case

A~ t !512B̄t2(12g)expF22E
t

`dt8

t8
cosS mt8

F D G . ~33!

~3! If g51, which corresponds physically to an ordina
matter-dominated universe, then an intermediate situa
obtains. Essentially any of the concentric circles in theH
50 plane of Fig. 4 can be approached asymptotically giv
a universe for whichVf→a1 andVf→12a1 wherea1 is
a constant in the range 0,a1,1, which depends on the
initial conditions and the parametersm andF.

We observe that for all values ofg,

rf}
1

a3 ~34!

at late times. Sincerg}a23g, the three different late time
behaviors can thus be understood as a consequence o
scalar field either decreasing more rapidly than the barotro
fluid (g,1), less rapidly (g.1), or at the same rate (g
51). The scalar field thus eventually dominates ifg.1,
while the barotropic fluid dominates ifg,1. In the interest-
ing critical case of dust filled models (g51) both the scalar
field and ordinary matter are of cosmologically significa
density at late times.

One simplification that is often made in studying quinte
sence models is to assume that at late times the quintess
field obeys an equation of state

Pf5~gf21!rf ~35!

with gf effectively constant. While such an assumption
justified in the case of models with a slowly varying sca
field, it does not apply in the present case. In particular, si
the effective barotropic index of the scalar field is@15#

gf5
2x2

x21y2 , ~36!
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PROPERTIES OF COSMOLOGIES WITH DYNAMICAL . . . PHYSICAL REVIEW D63 023503
we see thatgf.sin2(mt/F) at late times, so that it remain
truly variable, varying from 0 to 2 over each cycle. It fo
lows from Eqs.~25!–~28! that the scalar energy density p
rameter obeys the equation

V̇f53HVf~12Vf!~g2gf! ~37!

so thatV̇f→0 as t→`, which accords with the late time
properties of the solutions observed above.

III. NUMERICAL INTEGRATION

We will now consider the extent to which models bas
on the PNGB potential are constrained by the latest obse
tional evidence. This work extends the studies previou
undertaken by various authors@17,18,23,24,30#. In the most
recent analysis, Frieman and Waga have compared the
straints imposed by the high redshift supernovae lumino
distance on the one hand and gravitational lensing bound
the other@24#. The two measures provide tests which a
potentially in opposition. Here we will perform a simila
analysis for the PNGB models, but also taking into acco
the possibility of luminosity evolution which has not bee
considered in previous studies@18,24#. We are therefore con
sidering the model of the previous section withg51.

To proceed it is necessary to integrate the equations
merically. To do this we introduce the dimensionless va
ables

u5
J

H0
5

kḟ

H0
, ~38!

v5Vm0
1/3~11z!, ~39!

w5I 5
kf

F . ~40!

whereVm0 is the fractional energy density of matter at t
present epoch,t0. The dynamical system then becomes

u8523
H

H0
u1

m2

FH0
2
sinw, ~41!

v852v
H

H0
, ~42!

w85
u

F , ~43!

where the Hubble parameter is defined implicitly accord
to

H

H0
[Fv31

1

6
u21

m2

3H0
2~cosw11!G1/2

, ~44!

and prime denotes a derivative with respect to the dim
sionless time parametert[H0t. Only the variablev differs
from those used by Frieman and Waga@18#. Our reason for
02350
a-
ly

n-
ty
on

t

u-
-

g

-

making the choice~39! is that it allows us to integrate th
Friedmann equation directly rather than a second order e
tion ~11! which follows from the other equations by virtue o
the Bianchi identity. This may possibly lead to better n
merical stability since it is not necessary to implement
Friedmann constraint separately.

We begin the integration at initial values ofu, v, andw
chosen to correspond to initial conditions expected in
early matter-dominated era. The integration proceeds t
until the rhs of Eq.~44! is equal to 1, thereby determining th
value of the present epoch,t0, to be the time at whichH
5H0. We are then also able to determineVm0, since accord-
ing to Eq.~39!

Vm05v3~ t0!. ~45!

The choice of appropriate initial conditions has been p
viously discussed@23,17,18#. In particular, since the Hubble
parameter is large at early times, it effectively acts as
damping term in Eq.~3!, driving the scalar field to a stat
with ḟ50 initially, i.e. u50. We takev51101 initially,
which in view of relation ~39! and the fact thatVm0
;0.1–1 corresponds to the early matter dominated
1100<z&3000. Results of the integration do not change s
nificantly if v is altered to values within the same order
magnitude.

The initial value of the scalar field variable,wi[w(t i),
can lead to some variability in predicted cosmological p
rameters at the present epoch. A few different values
w(t i) have been considered by different authors@23,17,18#.
However, the only systematic studies of bounds in theM , f
parameter space have been performed@18,24# for one par-
ticular initial value, wi51.5. One must bear in mind tha
such bounds are also dependent onwi , the value of which is
not greatly restricted. Given that we are starting withu(t i)
.0, so that the kinetic energy of the scalar field is initia
negligible, the only physical restriction on the value ofwi
comes from the requirement that the scalar field should
sufficiently far from the minimum of the potential,V(f),
that Vf(t i) is small. Thus will ensure thatwi is consistent
with a scalar field that has emerged from the radiation do
nated era withVf sufficiently small that is consistent with
bounds set by primordial nucleosynthesis, and by struc
formation models. This still leaves considerable latitude
the choice ofwi , however.

In Figs. 5 and 6 we display contour plots ofVf0 andH0t0
in the M , f parameter space for two valueswi51.5 andwi
50.5. Similar figures have been given by Frieman and W
@18# in thewi51.5 case, although our resolution is somewh
better. Aswi decreases the contour plots do not change
nificantly in terms of their overall features, but contours w
equivalent values shift to lower values of thef parameter. For
example, for large values ofM the Vf050.7 contour lies at
a valuef .2.0531018 GeV if wi51.5, while the same con
tour lies atf .0.9431018 GeV if wi50.5.

The other principal feature of the plots 5 and 6, which w
not commented on in Ref.@18#, is the wave-like properties o
the contours at larger values ofM. These features can b
3-7
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readily understood by considering the corresponding plot
the deceleration parameter,q0, which is defined in terms o
u(t0), v(t0), andw(t0) by

q05
3

2
v3~ t0!1

1

2
u2~ t0!21,

5
1

2
~113Vf026y0

2!. ~46!

FIG. 5. Contours ofVf0 in the M , f parameter space for two
choices of initial values:~a! wi51.5; ~b! wi50.5.

FIG. 6. Contours ofH0t0 in the M , f parameter space for two
choices of initial values:~a! wi51.5; ~b! wi50.5.
02350
of

We display contour plots ofq0 in the M , f parameter space
in Fig. 7. Essentially, asM increases for roughly fixedf for
sufficiently largeM, the value ofq0 oscillates over negative
and positive values, from a minimum ofq05 1

2 (123Vf0) to
a maximumq05 1

2 (113Vf0) about a mean ofq050.5. This
corresponds to the scalar field,f, having undergone more
and more oscillations by the time of the present epoch. T
minimum value ofq0 is attained whenḟ50 instantaneously,
while the maximum value ofq0 is attained whenf is instan-
taneously passing through the minimum of its potential.

For smaller values ofM to the left of the plots the scala
field has only relatively recently become dynamical, where
for larger values ofM, the scalar can already have undergo
several oscillations by the time of the present epoch, part
larly if f is small. This variation can be understood in term
of the asymptotic period of oscillation of solutions whic
approach C1, which by Eqs.~29!,~30! is

ta52pF/m52p f /M2. ~47!

The periodta is shorter for largerM, or for smallerf. Since
the finalf values plotted in thewi50.5 case are a factor of 2
smaller than thewi51.5 case, this also explains why poin
with the same value ofM have undergone more oscillation
up to the present epoch for the smaller value ofwi .

The value ofH0t0 oscillates asM increases for roughly
fixed f, according to whether the universe has been acce
ating or decelerating in the most recent past, with more ra
variation for parameter values with shorter asymptotic pe
ods,ta .

FIG. 7. Contours ofq0 in the M , f parameter space for two
choices of initial values:~a! wi51.5; ~b! wi50.5. Valuesq0,0,
corresponding to a universe whose expansion is accelerating a
present epoch, are shaded.
3-8
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The wiggles in theVf0 contours are a residual effect o
the oscillation of the scalar field asVf settles down to a
constant value according to Eq.~37!. The variation in the
value of Vf0 with the value ofwi can be understood from
the fact that for smaller values ofwi the scalar field begins its
evolution in the matter-dominated era closer to the criti
points, C11, corresponding to the maximum of the potenti
V(f). For fixed M and f the period of quasi-inflationary
expansion is therefore longer, and the present value ofVf0
larger.

IV. CONSTRAINTS FROM HIGH-REDSHIFT TYPE IA
SUPERNOVAE

Empirical calibration of the light curve–luminosity rela
tionship of type Ia supernovae provides absolute magnitu
that can be used as distance indicators. Since the lumino
distance of a light source,dL , is defined by

H0dL

c
5~z11!E

t

t0
~z11!dt, ~48!

with t5H0t, it is convenient to define an additional variab

r 52E
t0

t

v dt, ~49!

which is proportional to the comoving coordinate distanc

r comoving5
r

H0a~ t0!v~ t0!
. ~50!

We then adjoin a differential equation

r 852v ~51!

to the differential equations~38!–~40! when performing the
numerical integration. In terms ofr and v, the luminosity
distance is then determined according to

H0dL

c
5

v

Vm0
2/3

„r 2r ~ t0!…, ~52!

and can be used in the appropriate distance modulus to c
pare with the supernovae data.

Frieman and Waga@24# have recently considered con
straints on PNGB models from supernovae data~without
source evolution! using the data set of Riesset al. @4#. We
will perform a similar analysis, but we will make use of th
largest available data set, namely the 60 supernovae
lished by Perlmutteret al. @3# ~hereafter P98!. Of these, 18
low redshift SNe Ia were discovered and measured in
Calán-Tololo survey @31#, and the Supernova Cosmolog
Project discovered 42 new SNe Ia at redshifts between 0
and 0.83. The peak magnitudes of the supernovae are
rected using the ‘‘stretch factor’’ light curve fitting metho
@3,32#. This method is based on fitting a time-stretched v
sion of a single standard template to the observed light cu
The stretch factor is then used to estimate the absolute m
nitude.
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A. Models without evolution

We use the stretch-luminosity corrected effectiveB-band
peak magnitude in Table 1 of P98 as the absolute magni
and denote it asmB

eff . The distant modulus of a supernova
defined asmB

eff1M0, where M0 is the fiducial absolute
magnitude which has not been given in the literatures
fitting method to obtainM0, using only the 18 Cala´n/Tololo
supernovae, can be found in@33,34#. Perlmutteret al. @3#
calculate the confidence regions by simply integrating o
M0. In this paper, we will perform an analytic marginaliz
tion overM0 and obtain the marginal likelihood.

Similarly to thex2 statistic used by Riesset al. @4#, we
define the quadratic form

x2~M , f !5(
i 51

60
~mB,i

eff 1M02m i !
2

s i
2

~53!

wherem i(zi ;H0 ,M , f ) is the predicted distance modulus fo
model parameters (M , f ), and

s i
25sm

B,i
eff

2
1S 5 log e

zi
sz,i D 2

. ~54!

The predicted distance modulus is

m i55 logdL~zi !125, ~55!

if the luminosity distance,dL , as defined by Eq.~48! or Eq.
~52!, is given in units of Megaparsecs.

In order to perform analytic marginalization overH0 as
well as overM0 we separate out theH0 and M0 depen-
dence fromm i into a quantity,n, which we define by

m i2M05gi1n ~56!

wheregi(zi ;M , f ) depends implicitly only onM and f. We
then follow the statistical procedures adopted by Dre
Loredo and Wasserman@35,36# and marginalize overn using
a flat prior that is bounded over some rangeDn.

The marginal likelihood is

L~M , f !5
1

DnE dn e2x2/25
sA2p

Dn
e2Q/2 ~57!

where

Q~M , f !5(
i 51

60
~mB,i

eff 2gi2 n̂ !2

s i
2

~58!

and n̂(M , f ) is the best-fit value ofn given M and f, with
conditional uncertaintys. We identify 1/s2 as the coefficient
of n2 in Eq. ~53!,

1

s2 5(
i 51

60
1

s i
2 , ~59!

and n̂ ass2 times the coefficient of2n, viz.
3-9
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n̂~M , f !5s2(
i 51

60 mB,i
eff 2gi

s i
2

. ~60!

The quadratic form~58! is what one would obtain by
calculating the ‘‘maximum likelihood’’ forM and f. Sinces
is independent ofM and f, it follows from Eq. ~57! that the
marginal likelihood is proportional to the maximum likel
hood in this case.

Figure 8 shows the 68.3% and 95.4% joint credible
gions forM and f, and is a direct analogue of Fig. 1 of Re
@24#, where a similar analysis was performed on 37 super
vae given in R98. The position of the region of paramet
which are included at both the 68.3% and 95.4% confide
levels is broadly similar to that obtained from the R98 d
@24#. Although Frieman and Waga@24# did not include the
parameter regionM.0.004h eV, we have redone thei
analysis on the R98 data and find that the parameter valu
the right of Fig. 8 which are admitted at the 95.4% level b
excluded at the 68.3% for the P98 dataset~labeled region II
in Fig. 8!, are in fact excluded also at the 95.4% confiden
level if the 37 supernovae of the R98 dataset are used.
possible that this discrepancy has its origin in the differ
techniques used by Riesset al. @4# to determine the distanc
moduli. Possible systematic discrepancies in the ‘‘stre
factor’’ method of P98 versus the ‘‘multi-color light curve
and ‘‘template fitting methods’’ of R98 have been discuss
in some detail in Ref.@35#.

The importance of the 2s included parameter region t
right of Fig. 8 diminishes, however, if one compares it w
Figs. 5 and 6, since it largely corresponds to parameter
ues withVf0*0.9, which can be discounted by dynamic
measurements ofVm0, whereVm01Vf051. Furthermore,
the few allowed values below theVf050.9 contour in this
part of the parameter space have unacceptably small va
for the age of the Universe,H0t0.

The parameter region 0.002h eV,M,0.003h eV,
which from Fig. 8 is admitted at both the 68.3% and 95.4
levels ~labeled region I!, by contrast corresponds to accep
able values of bothVf0 and H0t0. Comparing with Fig. 7,
we see that this region has20.1&q0&20.6, corresponding
to a Universe with a scalar field still in an early stage

FIG. 8. Confidence limits onM , f parameter values, withwi

51.5 and no evolution of sources, for the 60 supernovae Ia in
P98 dataset. Parameter values excluded at the 95.4% leve
darkly shaded, while those excluded at the 68.3% level are lig
shaded.
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rolling down the potentialV(f). The label I is thus indica-
tive of the fact that the scalar field is rolling down the p
tential for the first time~from left to right!, while in region II
the scalar field is rolling down the potential for the seco
time ~from right to left!. In region II q0 is positive—
however, it corresponds to parameter values for which th
would have been a cosmological acceleration at modest
shifts in the past, e.g., atz;0.2, well within the range of the
current supernovae dataset.

Since conclusions regarding statistically preferred regi
of the parameter space can change if evolution of the sou
occurs, we think it is important that this possibility is als
examined, as we will now do.

B. Models with evolution

In view of the recent results of Refs.@5,6#, supernovae Ia
may exhibit some evolutionary behavior, at least as far
their rise times are concerned. A possible evolution in
peak luminosity is therefore a possibility which must be s
riously investigated.

In the absence of a detailed physical model to expl
precisely how the source peak luminosities vary with re
shift, one approach is to assume some particular empir
form for the source evolution, and to examine the con
quences. Such an analysis has been recently preforme
Drell, Loredo and Wasserman@35# in the case of Friedmann
Lemaı̂tre models with constant vacuum energy. We will u
dertake an equivalent analysis for the case of PNGB qu
essential cosmologies.

Following Drell, Loredo and Wasserman@35# we will as-
sume that the intrinsic luminosities of SNe Ia scale as
power of 11z as a result of evolution. This model introduce
a continuous magnitude shift of the formb ln(11z) to the
SNe Ia sample. Equation~53! then becomes

x2~M , f !5(
i 51

60
„mB,i

eff 2gi2n2b ln~11zi !…
2

s i
2

. ~61!

The parameterb will be assumed to have a Gaussian pr
distribution with meanb0 and standard deviationb. Physi-
cally the parameterb0 represents a redshift-dependent ev
lution of the peak luminosity of the supernovae sourc
which might be expected to arise as a result of the chem
evolution of the environment of the supernovae progenit
as abundances of heavier elements increase with co
time. Ultimately, one should hope to account for this evo
tion with astrophysical modeling of the supernovae exp
sions @7#. The parameterb would then account for a loca
variability in the supernovae environments between regi
of individual galaxies at the same redshift which are richer
poorer in metals, or with progenitor populations of differe
ages and masses, etc.

We now have two parameters to marginalize over,n and
b. As in the case of models with no evolution, we will ma
ginalize overn using a flat prior. We use a Gaussian prior f
b with meanb0 and standard deviationb, so that

p~b8!5
1

bA2p
e2b82/2b2

~62!

where

e
are
ly
3-10
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b85b2b0 . ~63!

The marginal likelihood is calculated by multiplying th
prior ~62! by the likelihood resulting from Eq.~57!, and in-
tegrating overb. The resulting likelihood is

L~M , f !5
1

DnE db8E dn p~b8!e2x2/2

5
ss̄A2p

Dnb
e2Q/2 ~64!

where

Q~M , f !52
b̂2

s̄2
1(

i 51

60
~hi2s2H!2

s i
2

, ~65!

hi~zi ;M , f !5mB,i
eff 2gi2b0 ln~11zi !, ~66!

H~M , f !5(
i 51

60 hi

s i
2 . ~67!

The conditional best-fit ofb8 is given by

b̂~M , f !5s̄2(
i 51

60
hi@ ln~11zi !2s2G#

s i
2

, ~68!

G5(
i 51

60
ln~11zi !

s i
2 , ~69!

and theb8 uncertainty,s̄, is given by

1

s̄2
5

1

b2 2s2G 21(
i 51

60 ln2~11zi !

s i
2 . ~70!

Although s̄ is independent ofM and f, the marginal likeli-
hood is no longer proportional to the profile likelihood b
causeQ is now given by Eq.~65! rather than by the chi-
square type statistic~58!.

We have performed a detailed numerical analysis on
P98 dataset, varyingb0 , b and wi . As a result we find a
best-fit value ofb0[b* .0.414, forwi51.5 in the PNGB
models. This would correspond to supernovae being intri
cally dimmer by 0.17 magnitudes at a redshift ofz50.5,
which is an effect of the typical order of magnitude bei
addressed in current attempts to better model the super
explosions@7#. Furthermore, we find that inclusion of a no
zero variance,b2, does not alter the prediction of the best-
value ofb0, although it naturally does lead to a broadeni
of the areas of parameter space included at the 2s level.
There is relatively little broadening of the region of para
eter values included at the 1s level in the b05b* plane,
however, which is no doubt a consequence of the steep
of the q0 contours in Fig. 7~a! in the area corresponding t
region II.

In Figs. 9 and 10 we display the joint credible regions
M and f, for two slices through the 3-dimensional (M , f ,b0)
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parameter space forwi51.5: ~a! the best-fit caseb05b* ;
and ~b! b050. Analagously, the best-fit case is shown
Fig. 11 for wi50.2. We seefrom Fig. 10 that once the
likelihood is normalized relative tob* no regions remain in
theb50 parameter plane which are admitted at the 1s level
when b50. Furthermore, even when a non-zero stand
deviation,b, is included, region II of the (M , f ) parameter
plane is favored at the 1s level, in contrast to Fig. 8.

We have also undertaken an analysis of the models w
b050 but variableb, similarly to the study of Ref.@35#. In
that case, we once again find that region II of the (M , f )
parameter plane is admitted at the 1s level if b50.25 orb
50.5. The dependence of the value of

Q̄[22 ln~LDn!5Q22 lnS A2pss̄

b
D ~71!

on the value ofb is displayed in Fig. 12, forb050 as com-
pared with the best-fit caseb05b* . The quantityQ̄ is analo

FIG. 9. Confidence limits onM , f parameter values in the bes
fit b050.414 slice of the (M , f ,b0) parameter space, withwi

51.5, for the 60 supernovae Ia in the P98 dataset. Parameter v
excluded at the 95.4% level are darkly shaded, while those exclu
at the 68.3% level are lightly shaded. For reference, contours
Vf0 and H0t0 are superposed as dashed and dotted lines res
tively.
3-11



od

he
e

t

ri-

lu

he
n

cal
in-
en-
and
con-
the

a
ore
een

f

ro-
to
. In
ro-
no-
lues

fit
it
rk
de
ed

fit
ith
rkly
ded.
d

S. C. CINDY NG AND DAVID L. WILTSHIRE PHYSICAL REVIEW D 63 023503
gous to the chi-square statistic of the maximum likeliho
method. We see that theb050 models favor a non-zero
value ofb.0.36 by a very small margin as compared to t
b50 case. Forb50.36 the points of greatest likelihood li
mainly in region II, in contrast with theb50 case in Fig. 8.

Varying the initial conditionwi does not appear to affec
the best-fit value ofb0 significantly. Forwi50.2 ~cf. Fig.
11!, for example, the best-fit value wasb* 50.435, a differ-
ence of 5% from thewi51.5 case. Furthermore, the nume
cal value of the least value ofQ̄ was only 0.2% greater in the
wi50.2 case. We have not attempted to find a best-fit va
for wi .

V. CONSTRAINTS FROM LENSING STATISTICS

Gravitational lensing of distant light sources due to t
accumulation of matter along the line of sight provide a

FIG. 10. Confidence limits onM , f parameter values in theb0

50 slice of the (M , f ,b0) parameter space relative to a best-
valueb* .0.414, for the 60 supernovae Ia in the P98 dataset, w
wi51.5. Parameter values excluded at the 95.4% level are da
shaded, while those excluded at the 68.3% level are lightly sha
For reference, contours ofVf0 andH0t0 are superposed as dash
and dotted lines respectively.
02350
e

-

other relatively sensitive constraint on the cosmologi
models of interest. For cosmology the situation of most
terest is the lensing of high luminosity quasars by interv
ing galaxies. The abundance of multiply imaged quasars
the observed separation of the images to the source puts
straints on the luminosity-redshift relation and hence
model parameters. Basically, if the volume of space to
given redshift is larger then on average one can expect m
lensing events. This leads to a statistical test, which has b
used to put bounds onL @25–27# and to test properties o
some decayingL or quintessence models@30,37#.

Gravitational lensing statistics are useful since they p
vide a test which potentially provides opposing constraints
those obtained from supernovae magnitude-redshift tests
particular, in the case of models with a vacuum energy p
vided by a cosmological constant, the high redshift super
vae have been interpreted as favoring relatively large va
of VL—Perlmutteret al. @3# give a value ofVL50.72 at 1s

h
ly
d.

FIG. 11. Confidence limits onM , f parameter values in theb0

50 slice of the (M , f ,b0) parameter space relative to a best-
valueb* .0.435, for the 60 supernovae Ia in the P98 dataset, w
wi50.2. Parameter values excluded at the 95.4% level are da
shaded, while those excluded at the 68.3% level are lightly sha
For reference, contours ofVf0 andH0t0 are superposed as dashe
and dotted lines respectively.
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level—whereas the gravitational lensing data lead to up
bounds onVL : Kochanek@25# quotesVL,0.66 at the 2s
level. A combined likelihood analysis has been performed
various authors@24,27,30#.

Gravitational lensing constraints on the PNGB mod
have been very recently given by Frieman and Waga@24# for
wi51.5. However, Frieman and Waga considered a m
restricted range of parameter space,M,0.005h eV, since
they did not consider the possibility of source evolution
the case of the type Ia supernovae and therefore took va
of M.0.005h eV to be ruled out. We wish to extend th
range ofM for the gravitational lensing statistics to consid
parameter values corresponding to region II in the supe
vae constraint graphs, Figs. 8 and 10, so as to compare
constraints from different tests.

We have thus simply followed the calculation describ
by Waga and Miceli@30#, who performed a statistical lensin
analysis of optical sources described earlier by Kocha
@25#. They used a total of 862 (z.1) high luminosity qua-
sars plus 5 lenses from seven major optical surveys@38#.
~Another alternative not considered here is to analyze d
from radio surveys—see, e.g.,@26,27#.! Undertaking a simi-
lar analysis for the increased parameter range, we arriv
Fig. 13, which shows the 68.3% and 95.4% joint credi
regions forM and f, for two values ofwi . We refer the
reader to Refs.@25,30# for details of the calculation. The onl
regions of parameter space excluded at the 2s level turn out
to be areas of parameter space for which the deceleratio
presently negative~cf., Fig. 7!, with the scalar field still com-
mencing its first oscillation at the present epoch.

VI. DISCUSSION

Let us now consider the overall implications of the co
straints observed above.

First, since empirical models with source evolution
appear to fit the data somewhat better, it would appear
we do have weak evidence for an underlying evolution of
peak luminosity of the type Ia supernovae sources, at lea
the context of the PNGB quintessence models. It might
interesting to compare the case of other quintessence mo
or the case of a cosmological constant. However, the PN
model is qualitatively different from such models since
final state corresponds to one in which the ultimate des

FIG. 12. Variation of the least value ofQ̄522 ln(LDn) as a
function of the standard deviationb of the prior distribution forb0

for valuesb050 andb05b* .
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of the universe is to expand at the same rate as a spatially
Friedmann-Robertson-Walker model, rather than to unde
an accelerated expansion. This is of course precisely why
chose the PNGB models as the basis of our investigat
rather than models in which a late-time accelerated exp
sion had been built in by hand. If we wish to test the hypo
esis that the faintness of the type Ia supernovae is at l
partly due to an intrinsic variation of their pea
luminosities—which is a very real possibility in view of th
results of@5#—then a quintessence model which possesse
variety of possibilities for the present-day variation of t
scale factor is probably the best type of model to investiga

If only supernovae luminosity distances~cf., Fig. 9! and
gravitational lensing statistics~cf., Fig. 13! are compared
then we see that there is a remarkable concordance betw
the two tests—region II of Fig. 9 coincides with a regio
included at even the 1s level in Fig. 13. This is perhaps no
surprising, since in view of Fig. 7 region II corresponds
parameter values for which the present day universe ha
ready undergone almost one complete oscillation of the s
lar field about the final critical point C2 of Fig. 1. It is thus
already well on the way towards its asymptotic behavi
which closely resembles that of a standard spatially
Friedmann-Robertson-Walker model.

Due to the oscillatory behavior, parameter values in
gion II correspond to models in which there has been a
cent cosmological acceleration~e.g., atz;0.2), butwith a
q(z) which changes sign three times over the larger rang
redshifts, 0,z,4, in the quasar lensing sample, and the
fore differing significantly from Friedmann-Lemaıˆtre models
over this larger redshift range. Extending the SNe Ia sam

FIG. 13. Confidence limits from gravitational lensing statistic
~a! wi51.5; ~b! wi50.2. Parameter values excluded at the 95.4
level are darkly shaded, while those excluded at the 68.3% leve
lightly shaded. For reference, contours ofVf0 andH0t0 are super-
posed as dashed and dotted lines respectively.
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to include objects at redshifts 0.1,z,0.4 andz.0.85 in
substantial numbers would greatly improve the ability to d
cide between models in regions I and II.

There is some cause for concern, however, if we cons
the favored values ofVf0 andH0t0. In the case of the mod
els with empirical evolution of the supernovae sources,
always found that the best-fit parameter values occurre
the Vf0→1 boundary of the (M , f ) parameter space. Th
overwhelming evidence of many astronomical observati
over the past two decades@39# would tend to indicate tha
Vm0.0.260.1, indicating that a vacuum energy fraction
Vf0;0.7–0.8 is desirable, andVf0&0.9 in any case. Al-
though parameter values withVf0,0.8 certainly fall within
both the 2s and 1s portions of region II of Fig. 9, for all
values ofb, there are potentially serious problems if we wi
to simultaneously obtain large values ofH0t0. In view of
recent estimates of the ages of globular clusters@40#, a lower
bound of 12 Gyr for the age of the Universe appears to
currently indicated. Withh.0.65 this would requireH0t0
*0.8. Forwi51.5, parameter values withH0t0.0.8 coin-
cide with valuesVf0*0.9 in region II, which is phenomeno
logically problematic.

The tension between the values ofVf0 andH0t0 is some-
what mitigated for lower values ofwi . For wi50.2, for ex-
ample, we see from Figs. 12 and 13~b! that theVf050.7 and
H0t0 meet in region II, and there is a small region of para
eters there with 0.7&Vf0&0.9 andH0t0*0.8, which is also
consistent with the other cosmological tests.

Even if the supernovae sources undergo evolution i
clear that parameter values in region I of 8, which are
vored in the absence of evolution of peak SNe Ia lumino
ties, are still included at the 2s level in the models with
evolution, in view of Fig. 9.

Perhaps the most significant aspect of our results is
et
l,

t,

-

02350
-

er

e
at

s

e

-
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e

fact that the mere introduction of an additional dispersio
b.0.17, in the peak luminosities while leaving their me
value fixed~cf. Fig. 11!, gives rise to a change in the best-
region of parameter space from region I to region II.~See
@41# for further details.! One would imagine that an increase
dispersion is likely to be a feature of many models of sou
evolution, even if evolutionary effects are of secondary i
portance. Thus even if the empirical models with non-zerob
are somewhat artificial, more sophisticated scenarios co
well lead to similar changes in regard to the fitting of co
mological parameters in the PNGB model.

Much tighter bounds on the parameter space of quin
sence models, including the present model, will be obtai
over the next decade as more supernovae data are colle
What we wish to emphasize, however, is that an effect
vacuum energy which is cosmologically significant at t
present epoch should not simply be thought of in terms o
‘‘cosmic acceleration.’’ A dynamical vacuum energy with
varying effective equation of state allows for many possib
ties for the evolution of the universe, and overly restricti
assumptions, such as equating quintessence to models w
late period of continuous cosmological acceleration, sho
be avoided. If detailed astrophysical modeling of type Ia
pernovae explosions ultimately shows that the dimness
distant supernova events is largely due to evolutionary
fects, it does not spell the end for cosmologies with dyna
cal scalar fields.
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Zeldovich, Zh. Éksp. Teor. Fiz.89, 346 ~1985! @Sov. Phys.
JETP62, 195 ~1985!#; D. L. Wiltshire, Phys. Rev. D36, 1634
~1987!.

@30# I. Waga and A. P. M. R. Miceli, Phys. Rev. D59, 103507
~1999!.

@31# M. Hamuyet al., Astron. J.112, 2408~1996!.
@32# S. Perlmutteret al., Astrophys. J.483, 565 ~1997!.
@33# M. Hamuy, M. M. Phillips, J. Maza, N. B. Suntzeff, R. A

Schommer, and R. Aviles, Astron. J.109, 1 ~1995!.
@34# M. Hamuy, M. M. Philips, R. A. Schommer, N. B. Suntzeff,
02350
.

.

Maza, and R. Aviles, Astron. J.112, 2391~1996!.
@35# P. S. Drell, T. J. Loredo, and I. Wasserman, Astrophys. J.530,

593 ~2000!.
@36# Our quantityn is identical to the quantityg given in Appendix

B of @35#.
@37# B. Ratra and A. Quillen, Mon. Not. R. Astron. Soc.259, 738

~1992!; L. F. Bloomfield Torres and I. Waga,ibid. 279, 712
~1996!; V. Silveira and I. Waga, Phys. Rev. D56, 4625
~1997!; A. R. Cooray and D. Huterer, Astrophys. J. Lett.513,
L95 ~1999!.

@38# D. Maozet al., Astrophys. J.409, 28 ~1993!; D. Crampton, R.
D. McClure, and J. M. Fletcher,ibid. 392, 23 ~1992!; H. K. C.
Yee, A. V. Filipenko, and D. H. Tang, Astron. J.105, 7
~1993!; J. Surdejet al., ibid. 105, 2064~1993!; E. E. Falco, in
Gravitational Lenses in the Universe, edited by J. Surdej, D.
Fraipont-Caro, E. Gosset, S. Refsdal, and M. Remy~Univ. of
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