5 research outputs found

    Frequency Control of Microgrid with Renewable Generation using PID Controller based Krill Herd

    Get PDF
    The main of this paper is to provide optimal control of a state microgrid system. The proposed configuration composes of renewable generation systems such as solar photovoltaic system and wind turbine generator with a Diesel Engine Generator and Fuel-Cell. An Aqua electrolyzer and other energy storage systems such as battery and flywheel are also used in the proposed microgrid. A standard PID (Proportional Integral Derivative) controller scheme is introduced whose its parameters are determined using different optimizations algorithm such as Algorithm Genetic, Particle Swarm Optimization, and Krill Herd algorithm for minimizing frequency and power deviations, in order to enhance the operation of this system. The PID controller gains are optimized by resolving an objective function. The simulation results are shown, and given that the Krill Herd algorithm improves the performance of the system in comparison with GA and PSO based on PID. The efficiency of the system is improved

    Design and experimental implementation of voltage control scheme using the coefficient diagram method based PID controller for two-level boost converter with photovoltaic system

    Get PDF
    Introduction. Currently, in the solar energy systems and a variety of electrical applications, the power converters are essential part. The main challenge for similar systems is controller design. In the literature, the PID controller has proved its effectiveness in many industrial applications, but determining its parameters remains one of the challenges in control theory field. The novelty of the work resides in the design and experimental implementation of a two-level boost DC-DC converter controlled by a PID controller for photovoltaic (PV) maximum power extraction. Purpose. Analysis and control of the two-level boost topology with renewable energy source and design of the PID controller parameters using simple and accurate method. Methods. PID coefficients are optimized using Coefficient Diagram Method (CDM) in the MATLAB environment. Results. A mathematical model of a two-level boost converter with PID controller and PV energy source was developed and analyzed. The model allows to design the controller parameters of the proposed system. Practical value. A prototype steered by the proposed CDM-PID controller was tested using an Arduino embedded board. A comparison between the simulation results and the experimental one is presented. The obtained results illustrate that the experimental results match the simulation closely, and the proposed CDM-PID controller provides a fast and precise results.Вступ. В даний час перетворювачі потужності є невід’ємною частиною сонячних енергетичних систем та різних електричних пристроїв. Основною проблемою для таких систем є проектування контролера. У літературі ПІД-регулятор довів свою ефективність у багатьох промислових застосуваннях, але визначення його параметрів залишається однією з проблем у галузі теорії управління. Новизна роботи полягає у розробці та експериментальній реалізації дворівневого підвищувального перетворювача постійного струму, керованого ПІД-регулятором, для отримання максимальної потужності фотоелектричних пристроїв. Мета. Аналіз та управління дворівневою топологією підвищення з використанням відновлюваного джерела енергії та розрахунок параметрів ПІД-регулятора простим та точним методом. Методи. Коефіцієнти ПІД оптимізуються за допомогою методу діаграми коефіцієнтів (CDM) у середовищі MATLAB. Отримані результати. Розроблено та проаналізовано математичну модель дворівневого підвищувального перетворювача з ПІД-регулятором та фотоелектричним джерелом енергії. Модель дозволяє спроєктувати параметри контролера пропонованої системи. Практична цінність. Прототип, керований пропонованим контролером CDM-PID, протестували з використанням вбудованої плати Arduino. Наведено порівняння результатів моделювання з експериментальними даними. Отримані результати показують, що експериментальні результати близько відповідають моделюванню, а пропонований CDM-ПІД-регулятор забезпечує швидкі та точні результати

    OPTIMAL FREQUENCY CONTROL IN MICROGRID SYSTEM USING FRACTIONAL ORDER PID CONTROLLER USING KRILL HERD ALGORITHM

    Get PDF
    Abstract. This paper investigates the use of fractional order Proportional, Integral and Derivative (FOPID) controllers for the frequency and power regulation in a microgrid power system. The proposed microgrid system composes of renewable energy resources such as solar and wind generators, diesel engine generators as a secondary source to support the principle generators, and along with different energy storage devices like fuel cell, battery and flywheel. Due to the intermittent nature of integrated renewable energy like wind turbine and photovoltaic generators, which depend on the weather conditions and climate change this affects the microgrid stability by considered fluctuation in frequency and power deviations which can be improved using the selected controller. The fractional-order controller has five parameters in comparison with the classical PID controller, and that makes it more flexible and robust against the microgrid perturbation. The Fractional Order PID controller parameters are optimized using a new optimization technique called Krill Herd which selected as a suitable optimization method in comparison with other techniques like Particle Swarm Optimization. The results show better performance of this system using the fractional order PID controller-based Krill Herd algorithm by eliminates the fluctuations in frequency and power deviation in comparison with the classical PID controller. The obtained results are compared with the fractional order PID controller optimized using Particle Swarm Optimization. The proposed system is simulated under nominal conditions and using the disconnecting of storage devices like battery and Flywheel system in order to test the robustness of the proposed methods and the obtained results are compared.Анотація. У статті досліджено використання регуляторів пропорційного, інтегрального та похідного дробового порядку (FOPID) для регулювання частоти та потужності в електромережі. Запропонована мікромережева система складається з поновлюваних джерел енергії, таких як сонячні та вітрогенератори, дизельних генераторів як вторинного джерела для підтримки основних генераторів, а також з різних пристроїв для накопичування енергії, таких як паливна батарея, акумулятор і маховик. Через переривчасту природу інтегрованої відновлювальної енергії, наприклад, вітрогенераторів та фотоелектричних генераторів, які залежать від погодних умов та зміни клімату, це впливає на стабільність мікромережі, враховуючи коливання частоти та відхилення потужності, які можна поліпшити за допомогою вибраного контролера. Контролер дробового порядку має п’ять параметрів порівняно з класичним PID-контролером, що робить його більш гнучким та надійним щодо збурень мікромережі. Параметри PID-контролера дробового порядку оптимізовані за допомогою нової методики оптимізації під назвою «зграя криля», яка обрана як підходящий метод оптимізації порівняно з іншими методами, такими як оптимізація методом рою частинок. Результати показують кращі показники роботи цієї системи за допомогою алгоритму «зграя криля», заснованого на PID-контролері дробового порядку, виключаючи коливання частоти та відхилення потужності порівняно з класичним PID-контролером. Отримані результати порівнюються з PID-контролером дробового порядку, оптимізованим за допомогою оптимізації методом рою частинок. Запропонована система моделюється в номінальному режимі роботи та використовує відключення накопичувальних пристроїв, таких як акумулятор та маховик, щоб перевірити надійність запропонованих методів та порівняти отримані результати
    corecore