22 research outputs found

    Porous ZnO-ZnSe nanocomposites for visible light photocatalysis

    No full text
    We report the synthesis of porous ZnO-ZnSe nanocomposites for use in visible light photocatalysis. Porous ZnO nanostructures were synthesized by a microwave-assisted hydrothermal reaction then converted into porous ZnO-ZnSe nanocomposites by a microwave-assisted dissolution-recrystallization process using an aqueous solution containing selenium ions. ZnO and ZnSe nanocrystallites of the nanocomposites were well-mixed (rather than forming simple core-shell (ZnO-ZnSe) structures), particularly, in the outer regions. Both ZnO and ZnSe were present at the surface and exposed to the environment. The porous ZnO-ZnSe nanocomposites showed absorption bands in the visible region as well as in the UV region. The porous ZnO-ZnSe nanocomposites had much higher activities than the porous ZnO nanostructures. Control experiments using cutoff filters revealed that the main photocatalytic activity of the synthesized nanostructures arose from photo-excitation of the semiconductor (ZnO or ZnSe) via absorption of light of an energy equal to or exceeding the band gap energyclose303

    Study of Copper Ferrite as a Novel Photocathode for Water Reduction: Improving Its Photoactivity by Electrochemical Pretreatment

    No full text
    Studies on water-splitting p-type oxide electrodes based on nontoxic earth-abundant elements are scarce. Herein, the behavior of electrodes composed of CuFe2O4 nanoparticles 30 nm in size is presented. The as-prepared CuFe2O4 nanoporous electrodes exhibit small anodic photocurrents in 0.1 m NaOH. However, an electrochemical pretreatment consisting in the application of sufficiently positive potentials leads to p-type behavior with a photocurrent onset as high as 1.1 V versus the reversible hydrogen electrode, which is among the most positive values reported for an oxide absorbing visible light (band gap of 2.1 eV). This photocurrent is partly due to H2 evolution, but there are also signs of photoreduction of the material. Although the photocurrents are modest, these results point to the possibility of using CuFe2O4 as a photocathode material in water-splitting devices. Furthermore, the strategy employed for the enhancement in the CuFe2O4 photoactivity could be extended to other photocathode materials.Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through projects MAT2015-71727-R, MAT2012-37676 (Fondos FEDER), and PRI-PIBIN-2011-0816 is gratefully acknowledged
    corecore