79 research outputs found

    Latent class growth analyses reveal overrepresentation of dysfunctional fear conditioning trajectories in patients with anxiety-related disorders compared to controls

    Get PDF
    Recent meta-analyses indicated differences in fear acquisition and extinction between patients with anxiety related disorders and comparison subjects. However, these effects are small and may hold for only a subsample of patients. To investigate individual trajectories in fear acquisition and extinction across patients with anxiety-related disorders (N = 104; before treatment) and comparison subjects (N = 93), data from a previous study (Duits et al., 2017) were re-analyzed using data-driven latent class growth analyses. In this explorative study, subjective fear ratings, shock expectancy ratings and startle responses were used as outcome measures. Fear and expectancy ratings, but not startle data, yielded distinct fear conditioning trajectories across participants. Patients were, compared to controls, overrepresented in two distinct dysfunctional fear conditioning trajectories: impaired safety learning and poor fear extinction to danger cues. The profiling of individual patterns allowed to determine that whereas a subset of patients showed trajectories of dysfunctional fear conditioning, a significant proportion of patients (?50 %) did not. The strength of trajectory analyses as opposed to group analyses is that it allows the identification of individuals with dysfunctional fear conditioning. Results suggested that dysfunctional fear learning may also be associated with poor treatment outcome, but further research in larger samples is needed to address this question

    Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe

    Get PDF
    The enemy release hypothesis posits that the initial success of invasive species depends on the scarcity and poor adaptation of native natural enemies such as predators and parasitoids. As for parasitoids, invading hosts are first attacked at low rates by a species-poor complex of mainly generalist species. Over the years, however, parasitoid richness may increase either because the invading host continuously encounters new parasitoid species during its spread (geographic spread-hypothesis) or because local parasitoids need different periods of time to adapt to the novel host (adjustment-hypothesis). Both scenarios should result in a continuous increase of parasitoid richness over time. In this study, we reconstructed the development of the hymenopteran parasitoid complex of the invasive leafminer Cameraria ohridella (Lepidoptera, Gracillariidae). Our results show that the overall parasitism rate increases as a function of host residence time as well as geographic and climatic factors, altogether reflecting the historic spread of C. ohridella. The same variables also explain the individual parasitism rates of several species in the parasitoid complex, but fail to explain the abundance of others. Evidence supporting the “geographic spread-hypothesis” was found in the parasitism pattern of Cirrospilus talitzkii (Hymenoptera, Eulophidae), while that of Pediobius saulius, another eulophid, indicated an increase of parasitism rates by behavioral, phenological or biological adjustments. Compared to fully integrated host-parasitoid associations, however, parasitism rates of C. ohridella are still very low. In addition, the parasitoid complex lacks specialists, provided that the species determined are valid and not complexes of cryptic (and presumably more specialized) species. Probably, the adjustment of specialist parasitoids requires more than a few decades, particularly to invaders which establish in ecological niches free of native hosts, thus eliminating any possibility of recruitment of pre-adapted parasitoids

    Two spatiotemporally distinct value systems shape reward-based learning in the human brain

    Get PDF
    Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants’ switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning

    Applicability of non-invasively collected matrices for human biomonitoring

    Get PDF
    With its inclusion under Action 3 in the Environment and Health Action Plan 2004–2010 of the European Commission, human biomonitoring is currently receiving an increasing amount of attention from the scientific community as a tool to better quantify human exposure to, and health effects of, environmental stressors. Despite the policy support, however, there are still several issues that restrict the routine application of human biomonitoring data in environmental health impact assessment. One of the main issues is the obvious need to routinely collect human samples for large-scale surveys. Particularly the collection of invasive samples from susceptible populations may suffer from ethical and practical limitations. Children, pregnant women, elderly, or chronically-ill people are among those that would benefit the most from non-invasive, repeated or routine sampling. Therefore, the use of non-invasively collected matrices for human biomonitoring should be promoted as an ethically appropriate, cost-efficient and toxicologically relevant alternative for many biomarkers that are currently determined in invasively collected matrices. This review illustrates that several non-invasively collected matrices are widely used that can be an valuable addition to, or alternative for, invasively collected matrices such as peripheral blood sampling. Moreover, a well-informed choice of matrix can provide an added value for human biomonitoring, as different non-invasively collected matrices can offer opportunities to study additional aspects of exposure to and effects from environmental contaminants, such as repeated sampling, historical overview of exposure, mother-child transfer of substances, or monitoring of substances with short biological half-lives

    High Current Anxiety Symptoms, But Not a Past Anxiety Disorder Diagnosis, are Associated with Impaired Fear Extinction

    Get PDF
    Although impaired fear extinction has repeatedly been demonstrated in patients with anxiety disorders, little is known about whether these impairments persist after treatment. The current comparative exploratory study investigated fear extinction in 26 patients treated for their anxiety disorder in the years preceding the study as compared to 17 healthy control subjects. Fear-potentiated startle and subjective fear were measured in a cue and context fear conditioning paradigm within a virtual reality environment. Results indicated no differences in fear extinction between treated anxiety patients and control subjects. However, scores on the Beck Anxiety Inventory across all participants revealed impaired extinction of fear potentiated startle in subjects with high compared to low anxiety symptoms over the past week. Taken together, this exploratory study found no support for impaired fear extinction in treated anxiety patients, and implies that current anxiety symptoms rather than previous patient status determine the success of extinction

    Quecksilber und Quecksilberverbindungen – Bestimmung von Quecksilber in Blut und Urin mittels Kaltdampf‐AAS [Biomonitoring Methods in German language, 2019]

    Full text link
    The working group “Analyses in Biological Materials” of the Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area validated the presented biomonitoring method. Mercury is determined by flow injection cold vapour atomic absorption spectrometry (CV‐AAS). The digested blood or urine samples are stabilised with potassium permanganate, introduced into the acid carrier flow (hydrochloric acid) and mixed with the reducing agent sodium borohydride. Mercury vapour formed by reduction is transported with an argon flow into the atomisation cell of the AA spectrometer. Calibration is performed using matrix matched calibration solutions. The mercury concentrations in real samples are calculated from the linear relationship between the measured absorbance and the mass concentration of mercury
    corecore