93 research outputs found

    A robust prognostic signature for hormone-positive node-negative breast cancer

    Get PDF
    BACKGROUND: Systemic chemotherapy in the adjuvant setting can cure breast cancer in some patients that would otherwise recur with incurable, metastatic disease. However, since only a fraction of patients would have recurrence after surgery alone, the challenge is to stratify high-risk patients (who stand to benefit from systemic chemotherapy) from low-risk patients (who can safely be spared treatment related toxicities and costs). METHODS: We focus here on risk stratification in node-negative, ER-positive, HER2-negative breast cancer. We use a large database of publicly available microarray datasets to build a random forests classifier and develop a robust multi-gene mRNA transcription-based predictor of relapse free survival at 10 years, which we call the Random Forests Relapse Score (RFRS). Performance was assessed by internal cross-validation, multiple independent data sets, and comparison to existing algorithms using receiver-operating characteristic and Kaplan-Meier survival analysis. Internal redundancy of features was determined using k-means clustering to define optimal signatures with smaller numbers of primary genes, each with multiple alternates. RESULTS: Internal OOB cross-validation for the initial (full-gene-set) model on training data reported an ROC AUC of 0.704, which was comparable to or better than those reported previously or obtained by applying existing methods to our dataset. Three risk groups with probability cutoffs for low, intermediate, and high-risk were defined. Survival analysis determined a highly significant difference in relapse rate between these risk groups. Validation of the models against independent test datasets showed highly similar results. Smaller 17-gene and 8-gene optimized models were also developed with minimal reduction in performance. Furthermore, the signature was shown to be almost equally effective on both hormone-treated and untreated patients. CONCLUSIONS: RFRS allows flexibility in both the number and identity of genes utilized from thousands to as few as 17 or eight genes, each with multiple alternatives. The RFRS reports a probability score strongly correlated with risk of relapse. This score could therefore be used to assign systemic chemotherapy specifically to those high-risk patients most likely to benefit from further treatment

    Inferring causal molecular networks: empirical assessment through a community-based effort

    Get PDF
    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense

    Pest management guide : corn, cotton, grain sorghum, rice, soybean, winter wheat

    Get PDF
    "2015 Missouri."includes statistics"This guide is intended to provide current recommendations for control of the most problematic weeds, insects and diseases encountered in Missouri corn, soybean and winter wheat cropping systems."--Page 2.Kevin W. Bradley (Extension Weed Scientist, Department of Agronomy), Laura E. Sweets, (Extension Plant Pathologist, Department of Plant Microbiology and Pathology, Commercial Agricultural Program), Wayne C. Bailey (Extension Entomologist, Department of Entomology), Moneen M. Jones (Assistant Research Professor, Fisher Delta Research Center), James W. Heiser (Research Associate - Weed Science, Fisher Delta Research Center)New 1/05, Revised 12/14/3C

    Propuesta de virtualización de servidores con Hyper-V en el centro de datos de la Facultad de Ciencias Médicas de la UNAN-Managua

    Get PDF
    La importancia del crecimiento en la potencia de cómputo y la existencia de problemas relacionados con el uso del hardware, ha hecho de la virtualización la solución más idónea para resolver tales dificultades, dentro de sus propósitos se encuentran hacer uso eficiente de los recursos y disminuir el costo total asociado a los mismos. Este trabajo de investigación fue realizado con la finalidad de proponer una solución para la virtualización servidores. La virtualización es una tecnología que permite la creación de equipos, basados en software, que reproducen el ambiente de una máquina física en sus aspectos de CPU, memoria, almacenamiento y entrada y salida de dispositivos. Se limita a trabajar básicamente con Hyper-V con el fin de acotar y definir la solución de virtualización , debido a la numerosa cantidad de soluciones que existen actualmente, como lo son VMware, Cytrix, entre otros. El enfoque principal se encontrará relacionado principalmente a la virtualización de servidores, a la disposición de Hyper-V para trabajar en cluster y al tipo de cluster que se puede implementar. El objetivo general de este trabajo es entonces, proponer una solución para efectuar la virtualización ya manera explicativa se describe como trabaja un cluster de alta disponibilidad con Hyper-V para efectuar tareas de migración de maquinas virtuales, empleando técnicas propias que vienen incorporadas en el software, como Live Migration ó Quick Migration que facilitan de gran forma la gestión y administración del entorno virtual. También se describirá brevemente los detalles técnicos para la implementación del centro de datos, la disposición de las áreas funcionales, el diagrama de distribución y otros parámetros importantes a tenerse en cuenta para disponer de un centro de datos confiable

    Modeling precision treatment of breast cancer

    Get PDF
    Background: First-generation molecular profiles for human breast cancers have enabled the identification of features that can predict therapeutic response; however, little is known about how the various data types can best be combined to yield optimal predictors. Collections of breast cancer cell lines mirror many aspects of breast cancer molecular pathobiology, and measurements of their omic and biological therapeutic responses are well-suited for development of strategies to identify the most predictive molecular feature sets. Results: We used least squares-support vector machines and random forest algorithms to identify molecular features associated with responses of a collection of 70 breast cancer cell lines to 90 experimental or approved therapeutic agents. The datasets analyzed included measurements of copy number aberrations, mutations, gene and isoform expression, promoter methylation and protein expression. Transcriptional subtype contributed strongly to response predictors for 25% of compounds, and adding other molecular data types improved prediction for 65%. No single molecular dataset consistently out-performed the others, suggesting that therapeutic response is mediated at multiple levels in the genome. Response predictors were developed and applied to TCGA data, and were found to be present in subsets of those patient samples. Conclusions: These results suggest that matching patients to treatments based on transcriptional subtype will improve response rates, and inclusion of additional features from other profiling data types may provide additional benefit. Further, we suggest a systems biology strategy for guiding clinical trials so that patient cohorts most likely to respond to new therapies may be more efficiently identified

    Combating subclonal evolution of resistant cancer phenotypes

    Get PDF
    Metastatic breast cancer remains challenging to treat, and most patients ultimately progress on therapy. This acquired drug resistance is largely due to drug-refractory sub-populations (subclones) within heterogeneous tumors. Here, we track the genetic and phenotypic subclonal evolution of four breast cancers through years of treatment to better understand how breast cancers become drug-resistant. Recurrently appearing post-chemotherapy mutations are rare. However, bulk and single-cell RNA sequencing reveal acquisition of malignant phenotypes after treatment, including enhanced mesenchymal and growth factor signaling, which may promote drug resistance, and decreased antigen presentation and TNF-α signaling, which may enable immune system avoidance. Some of these phenotypes pre-exist in pre-treatment subclones that become dominant after chemotherapy, indicating selection for resistance phenotypes. Post-chemotherapy cancer cells are effectively treated with drugs targeting acquired phenotypes. These findings highlight cancer's ability to evolve phenotypically and suggest a phenotype-targeted treatment strategy that adapts to cancer as it evolves

    A systems analysis of the chemosensitivity of breast cancer cells to the polyamine analogue PG-11047

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyamines regulate important cellular functions and polyamine dysregulation frequently occurs in cancer. The objective of this study was to use a systems approach to study the relative effects of PG-11047, a polyamine analogue, across breast cancer cells derived from different patients and to identify genetic markers associated with differential cytotoxicity.</p> <p>Methods</p> <p>A panel of 48 breast cell lines that mirror many transcriptional and genomic features present in primary human breast tumours were used to study the antiproliferative activity of PG-11047. Sensitive cell lines were further examined for cell cycle distribution and apoptotic response. Cell line responses, quantified by the GI<sub>50 </sub>(dose required for 50% relative growth inhibition) were correlated with the omic profiles of the cell lines to identify markers that predict response and cellular functions associated with drug sensitivity.</p> <p>Results</p> <p>The concentrations of PG-11047 needed to inhibit growth of members of the panel of breast cell lines varied over a wide range, with basal-like cell lines being inhibited at lower concentrations than the luminal cell lines. Sensitive cell lines showed a significant decrease in S phase fraction at doses that produced little apoptosis. Correlation of the GI<sub>50 </sub>values with the omic profiles of the cell lines identified genomic, transcriptional and proteomic variables associated with response.</p> <p>Conclusions</p> <p>A 13-gene transcriptional marker set was developed as a predictor of response to PG-11047 that warrants clinical evaluation. Analyses of the pathways, networks and genes associated with response to PG-11047 suggest that response may be influenced by interferon signalling and differential inhibition of aspects of motility and epithelial to mesenchymal transition.</p> <p>See the related commentary by Benes and Settleman: <url>http://www.biomedcentral.com/1741-7015/7/78</url></p
    • …
    corecore