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Abstract

Many dynamical processes can be represented as di-
rected attributed graphs or Petri nets where relation-
ships between various entities are explicitly expressed.
Signaling networks modeled as Petri nets are one class
of such graphical modeling and representations. These
networks encode how different protein in specific com-
partments, interact to create new protein products.
Initially, the proteins and rules governing their inter-
actions are curated from literature and then refined
with experimental data. Variation in these networks
occurs in topological structure, size, and weights as-
sociated on edges. Collectively, these variations are
quite significant for manual and interactive analysis.
Furthermore, as new information is added to these net-
works, the emergence of new computational models be-
comes paramount. From this perspective, hierarchical
spectral methods are proposed and applied for infer-
ring similarities and dissimilarities from an ensemble
of graphs that corresponds to reaction networks. The
technique has been implemented and tested on curated
signaling networks that are derived for breast cancer
cell lines.

1 Introduction

Graphical models of complex systems such as biolog-
ical processes enable semantic representation of com-
plex processes. The advent of high throughput experi-
mental processes and structured curation of knowledge
has yielded a more complete picture of these systems.
One class of such processes is signaling networks that
characterize protein interactions and their byproducts.
Modeling of signaling networks can occur at different
scales of abstraction. At one of end of spectrum, con-
tinuous modeling represents dynamic biochemical in-
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teractions. At the other end of the spectrum, mod-
eling can be purely statistical; this is amenable for
high throughput experimental design. While detailed
continuous modeling enables mechanistic exploration,
higher level modeling provides the basis for construct-
ing relationships through statistical correlation. An
intermediate step between these end points are the
Boolean, deterministic, and Petri net representations.
These representations not only provide a simplified
view, but also place a potential bound and enforce sta-
bility on a more complex model, e.g., ordinary differ-
ential equations. The emerging notion is not an inte-
grated and aggregate model, which embodies all cellu-
lar functions, but multiscale models that encapsulate
different aspects of the model systems at different lev-
els of abstraction. Signaling networks are complex and
may contain up to several hundred proteins. Potential
variations in a network originate from different model
system (e.g., different cell lines), changes in microenvi-
ronment, and treatment regime. It is therefore desir-
able to compare and contrast these graphical structures
for similarity, as well as dissimilarities, for large scale
databases. While the proposed method and application
have been evaluated on signaling networks derived from
Pathway logic [16], this technique is extensible to any
kind of database of graph structures for post analysis.
The primary contribution of this paper is a method-
ology for hierarchical decomposition of an ensemble of
graphs. The actual decomposition is through recursive
application of spectral analysis [1, 2, 15] on a directed
graph and derived subgraphs. The rationale for hi-
erarchical decomposition originates from the fact that
graphical structures are weighted and aggregation of an
ensemble of graphs leads to preferred topological mo-
tifs with similar weighting. This similarity in weighting
can be multiscale and hierarchical; thus, multiscale re-
covery of these motifs contribute to improved visualiza-
tion, partitioning, and understanding of an ensemble of
networks. Two examples of signaling network for two
mammalian cell lines are shown in Figure 1.

Section 2 provides a short summary of the back-
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ground biology. Section 3 reviews spectral analysis
within the context of graph representation. Section
4 outlines the details of approach, examples, and con-
cluding remarks. Section 5 concludes the paper.

(a)

(b)

Figure 1: A graphical representation of the signal-
ing networks generated with Pathway Logic. In each
graph, the colored circles represent proteins. The white
boxes represent rules, or signaling between the pro-
teins. Two cell types are shown: (a) MCF7, a basal
cell line and (b) SKBR3, a luminal cell line.

2 Biological driver

In cancer cells, the pathways that control the cell cy-
cle, cell growth, apoptosis (cell death), and cell adhe-
sion become deregulated through mutations [7]. Our
goal is to understand the cellular signaling pathways
associated with breast cancer. To that end, we have
modeled the signaling pathways in a panel of 51 breast
cancer cell lines. These cell lines capture both rare mu-
tations, as well as those that frequently occur in breast
tumors. One important feature of both breast tumors
and cell lines is the site of origin. Tumors and cell lines

that originate from basal epithelium tend to be much
more invasive than those that originate from luminal
epithelium. Furthermore, these two groups show dis-
tinct genetic patterns [12]. We were interested in the
cellular signaling pathways that distinguish the basal
and luminal cell lines.

3 Graph partitioning

Graph partitioning is concerned with the grouping of
the vertices of a connected graph into subsets so as
to minimize the total cut weight, as shown in Figure
2. One intent of graph decomposition is to simplify
the graph matching problems into simpler subgraph
matching problems. For example, it has been shown
that error-tolerant graph matching [10] can be sim-
plified using decomposition methods and reduced to
indexing. Within the context of this paper, spectral
analysis enables stable decomposition of graphs for fur-
ther analysis by global structural properties of eigen-
vectors corresponding to the Laplacian matrix. Let
qi = {1,−1} be a membership function for the assign-
ment of each node i for a two-way decomposition. The
optimum cut is given by Jmin = 1

4Σi,jwij [qi − qj ]2,
which can be rewritten as 1

2qT (D − W )q. The so-
lution to Jmin is given by second-smallest eigenvec-
tor of (D − W ). Formally, for a weighted graph
G = (V,E, Ω,W ), where V is a set of nodes, E is the
set of arcs, Ω = Vi, i ∈ V , and W = wij , ij ∈ E. The
Laplacian matrix is given by

Lij(G) =





∑
ik∈E

wik if i = j

−wij if i 6= j and (i, j) ∈ E
0 otherwise



 (1)

(a) (b)

Figure 2: Decomposition of an undirected graph into
two subgraphs while maintaining balanced graph size.

The second smallest eigenvector of the Laplacian is
also known as the Fiedler vector with many well-known
applications and properties. The major applications
of the Laplace eigenvalues are the max-cut problem,
semidefinite programming, and steady-state random
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walks on Markov chains [11]. Furthermore, the inter-
lacing properties of the eigenvalues have been shown
to be related with the chromatic number (minimum
number of colors such that no two adjacent vertices
share the same color), and the diameter and band-
width of graphs [6]. In addition, the Fiedler vector has
been used for recursive partitioning of the image [15]
for segmentation, and placing nodes of the graph in
a serial order for visualization [4]. For the purpose
of image partitioning, grouping is defined as a case of
graph partitioning, where partitioning is normalized to
inhibit formation of small sets of isolated nodes. An
elegant objective function is derived in the form of a
Rayleigh quotient, which has a standardized solution
as the eigenvector corresponding to the second small-
est eigenvalue.

One approach for graph partitioning is to construct
non-overlapping super-cliques using the node order by
the Fiedler vector [13,14]. A superclique is defined as a
center node and all of its immediate neighboring nodes.
A preliminary metric (distance measure) can be defined
to test the method and for locating non-overlapping
super-cliques, e.g., a center node that is not on the
perimeter and whose metric exceeds its neighbors. The
resulting super-cliques are relatively stable subgraphs,
which can be matched to the original graph using dis-
crete relaxation and edit distance algorithms [18].

3.1 Graph clustering

Despite recent progress in measuring similarities be-
tween graphs and performing inexact graph-matching,
clustering on graphs remains an open and challeng-
ing problem. Besides lack of ordering, graphs are of-
ten noisy (e.g., contain different numbers of nodes and
edges), and, as a result, standard pattern recognition
techniques are inadequate (e.g., variable vector size).
One approach is to measure pairwise similarities of the
graphs and cluster them by searching for sets of graphs
with strong mutual affinity [8]. Another approach to
overcoming this problem is through spectral represen-
tation of the graphs and representing the structures of
the graphs as vectors of “fixed” length. Each compo-
nent of a vector represents a different spectral mode of
the graph adjacency matrix. The spectral graph the-
ory suggests a number of unary and binary features [9].
Examples of unary features are (1) leading eigenvalues,
(2) eigenmode volume, (3) eigenmode perimeter, and
(4) derived features such as Cheeger constants. Bi-
nary features correspond to pairwise attributes of the
eigenmodes. Examples are the “mode association ma-
trix”, which projects the adjacency matrix onto the
basis spanned by the eigenvectors, and the “intermode

distances,” which is the path associated with the min-
imum number of edges, between the most significant
nodes associated with each eigenmode of the adjacency
matrix. These modes are then embedded in a pattern
space such as principal component analysis (PCA) or
independent component analysis (ICA).

4 Approach

Review of spectral methods, as applied to graphs, in-
dicates that previous efforts have focused on either de-
composition of a single graph or feature extraction from
an ensemble of graphs for subsequent clustering. The
focus of this paper is on a distinct biological appli-
cation and recursive decomposition of an ensemble of
graphs through spectral analysis. The main advan-
tages of spectral method are (1) a more stable decom-
position, (2) reduction in the number of free param-
eters, and (3) recursive application of this technique
for coarse-to-fine decomposition. The first step of the
process is to construct a composite representation from
within and between labeled graphs for similarities and
dissimilarities, respectively. This is followed by itera-
tive decomposition of the Laplacian of the composite
graph for revealing coarse-to-fine motifs from the sig-
naling network. Although the results are limited to the
Petri net derived from Pathway Logic, as shown in Fig-
ure 1, the technique can be extended to other forms of
graphical structures, such as workflow and dynamical
processes.

4.1 Network representation

The network models were curated from literature and
then refined with experimental data. Signaling mo-
tifs have two node types, corresponding to (1) protein
abundance and (2) rules. Internally, a typical repre-
sentation uses Systems Biology Markup Language as
follows:

<sbml level="2" version="1"

xmlns="http://www.sbml.org/sbml/level2">

<model id="myGraph" name="myGraph" >

<listOfCompartments>

<compartment id="CLc" name="Cell cytosol" />

</listOfCompartments>

<listOfSpecies>

<species id="o109" name="Pkcz-act-CLi"

compartment="CLi" initialConcentration="0"/>

<species id="o124" name="(Raf1:Rkip)-CLc"

compartment="CLc" initialConcentration="1"/>

<species id="o125" name="Raf1-CLc"

compartment="CLc" initialConcentration="1"/>

<species id="o126" name="Rkip-phos-CLc"

compartment="CLc" initialConcentration="0"/>

</listOfSpecies>
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Affinity type Ei = Ej Ei × Ej = 0 Ei × Ej 6= 0
Similarity Max value 0

∑
Ei

Dissimilarity 0 Max value
√
|E2

i − E2
j |

Table 1: Construction of the affinity matrix for simi-
larity or dissimilarity analysis: Ei and Ej indicate the
weighted edge from initial composition of the graph
ensemble.

<reaction id="t127" name="230.Rkip.by.aPkc">

<listOfReactants>

<speciesReference species="o124"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="o125"/>

<speciesReference species="o126"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="o109"/>

</listOfModifiers>

</reaction>

</model>

</sbml>

Where Reactants and Products are input and out-
put, respectively. Modifiers refer to protein or other
components that must be present for the reaction to
take place, and it remains unchanged during the reac-
tion. Each signaling node, in every graph, has a dis-
tinct ID; thus, it is invariant to motif discovery. For
similarity analysis, a composite graph is constructed by
aggregating self-similar edges (e.g., edges with identical
nodes between multiple graphs). This composite graph
is computed by Gc =

∑
i Gi and then normalized for

the number of graphs in the database. For dissimilarity
analysis, the system is designed to compute differences
between two groups of graphical networks. First the
composite representation, within each group, is com-
puted through aggregation as before. Next the dif-
ference between two composite representations is com-
puted. This difference corresponds to the differences
among self-similar edges, e.g., Gc = |∑i GGroup A

i −∑
j GGroup B

j |. The corresponding affinity matrix has a
symmetrical distance property (e.g., identical distance
measure when computed from Gi to Gj and vice versa).
These aggregation operators for edges in the composite
graphs are shown in Table 1. These operators gener-
ate weight matrices that are positive and symmetric.
Furthermore, a computed composite graph is often dis-
joint; thus, its connected components are identified. A
numerical example of constructing a composite graph
that represent dissimilarities between two graphs are
shown in Figure 3.

Intuitively, such a representation constructs a
weighted graph for capturing corresponding affinities
from a set of graphs. The affinity matrix is symmetric
with each element encoding a weighted edge between
corresponding nodes. Presently, these composite affin-
ity matrices are of the order of 900 nodes.

(a) (b)

(c)

Figure 3: A numerical example for constructing a com-
posite graph corresponding to dissimilarities: (a) graph
A; (b) Graph B; and (c) computed composite graph.

4.2 Decomposition algorithm

The above representation leads to the realization that
decomposition can be hierarchical, due to the weighted
representation of the graph, e.g., higher weights on a
set of edges implies stronger grouping. The spectral
decomposition is as follows:

1. Compute connected components of the composite
graph, Gc,

2. For each connected component compute in Gc do

(a) Compute Laplacian of the connected component
and its corresponding Fiedler vector,

(b) Partition the composite graph into two sub-
graphs, based on the sign of each element of
Fiedler eigenvector,
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(c) Repeat above 2 steps until each element of the
Fiedler vector has the same sign.

4.3 Model generation

The Pathway Logic framework was used to model the
signaling networks for the panel of 51 breast cancer
cell lines, 26 basal and 25 luminal [5, 16]. The con-
struction of a Pathway Logic model requires two key
elements: a set of rules and an initial state. The rules
represent all the biochemical transitions that can oc-
cur. Presently, the model has a set of 880 rules that
detail cellular signaling along multiple pathways, in-
cluding the raf-mek-erk pathway, PI3K cascade, and
ErbB-related signaling [3,17,19]. The initial state spec-
ifies all of the molecular components present in the
cell, as well as the cellular compartment in which they
are located. A Petri net for each cell line has been
generated, and data about protein function were ac-
quired from the SOURCE database (http://genome-
www5.stanford.edu/cgi-bin/source/sourceResult).

4.4 Initialization of Petri net

For the similarity analysis, protein abundance data was
used to determine the presence or absence of 28 pro-
teins known to be critically involved in cancer cell sig-
naling. For dissimilarity analysis, mRNA expression
data was analyzed to determine the initial state for
each cell line. Briefly, for each gene, the distribution of
mRNA expression values across the panel of cell lines
was analyzed. These expression values were grouped
using PAM clustering technique. Genes best repre-
sented by 2 clusters were considered present in some
cell lines and absent in others. Genes that yielded a
single cluster were considered present in all cell lines.
With this method, 39 out of 640 components in the
model were present in the initial state of some cell lines
and absent in others; the remainder were present in all
cell lines.

4.5 Experimental results

A number of experiments on signaling networks for sim-
ilarity and dissimilarity analysis were performed, and
in all cases spectral analysis has isolated significant mo-
tifs with meaningful biological implications and vali-
dated by domain expert. One experiment included 25
Petri nets, which were generated by Pathway Logic,
and a database of rules were curated to describe the
interactions of proteins. These Petri nets represent in-
dividual breast cancer cell lines, and for each cell line,
Western blot data were used to determine the presence

Figure 4: Hierarchical decomposition of one connected
component of the composite graph using recursive
spectral bisection. Each node in the dendrogram cor-
responds to a directed graph.

or absence of 28 proteins known to be critically involved
in cancer cell signaling. These breast cancer cell lines
can be classified by their site of origin as being basal
or luminal, where the label serves one of the bases of
analysis.

For similarity analysis, a composite graph was con-
structed as described earlier, and spectral clustering
was performed for each connected component. Figure
4 shows the dendrogram that corresponds to one of
these connected components. At each node of the den-
drogram, two “child” motifs are generated from the
“parent” motif. Figure 5 shows an example of the
motif structure at a specific node along the dendro-
gram. The corresponding left and right child decom-
positions are shown in Figure 6. The two child graphs
contain proteins involved in two distinct cellular pro-
cesses. The left child motif, shown in Figure 6a, con-
tains many proteins involved in cell surface signaling.
Integrins (Ia5Ib1 and IavIb3) are the most prominent
features in this graph. Integrins are heterodimeric in-
tegral membrane proteins composed of an alpha and
beta chain. These proteins are involved in cell adhe-
sion and cell-surface mediated signaling. Both of these
processes are extremely important for the maintenance
of cell integrity. These processes are frequently dis-
rupted in cancer. The proteins in the right child mo-
tif, shown in Figure 5b, are involved in the two-step
process used to generate new proteins: transcription
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Figure 5: A graphical motif at two levels below the
root node of Figure 4.

and translation. Smad2 is a transcriptional regulator,
while Eef2k is a regulator of translation. Smad pro-
teins are signal transducers and transcriptional mod-
ulators that mediate multiple signaling pathways. It
mediates the signal of the transforming growth fac-
tor (TGFβ), and therefore regulates multiple cellular
processes, including cell proliferation, apoptosis, and
differentiation. Eef2k links activation of cell surface
receptors to cell division, and is involved in the regu-
lation of translation (protein synthesis). This example
demonstrates the utility of spectral decomposition for
isolating signaling motifs that represent unique cellular
functions.

For dissimilarity analysis, the technique revealed
many signaling motifs in our model networks, where
some are more frequent than others. This frequency
is estimated by the weight of affinity matrix from the
composite graph. Here we describe the biological ba-
sis for a set of child graphs that are validated by do-
main expertise. Figure 7 shows two child graphs at
the fifth level of a dendrogram computed for dissimi-
larity analysis. Both of these motifs occur more fre-
quently in luminal than basal cell lines. The left child
of Figure 7a contains signaling related to cell struc-
ture and motility. Specifically, there is a small network
centered on the phosphorylated form of beta-catenin
(Bcat-Yphos-CLc). Beta-catenin is an adherens junc-
tion protein involved in the regulation of cell adhesion.
Interestingly, activating mutations in beta-catenin have
oncogenic activity that may result in tumor develop-
ment. The other subnetwork in this graph involves
rac1, elmo1, and dock1. These proteins are involved in
regulating changes in cell shape required for cell motil-
ity and engulfment of apoptotic cells. All together, the
proteins in this signaling motif are important for cel-
lular integrity. The right child graph 7b shows a small

(a)

(b)

Figure 6: Decomposition of Figure 5 into left and right
child motifs.
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(a)

(b)

Figure 7: Two child motifs of a dissimilarity analysis
corresponding to luminal and epithelial cells.

network involving wasf1 (Wave1-act-CLc) and nck1.
These proteins play a role in signal transduction from
small GTPases and receptor tyrosine kinases to down-
stream targets that include ras. Ras is an oncogene,
and mutations in signaling associated with ras have
been implicated in many types of cancers. The exami-
nation of these two signaling motifs indicate validation
of this method for identifying and understanding key
regions of a large signaling network.

5 Conclusion

A system has been developed and implemented for iter-
ative decomposition of an ensemble of graphs for simi-
larity or dissimilarity analysis using spectral graph the-
ory. Operators are defined to compute corresponding
affinity matrices in both cases. The spectral methods
enable a more stable model for decomposition with
a reduced number of free parameters. The proposed
technique has been applied to signaling networks to
reveal coarse-to-fine motifs of significance that either
advocate preferred similarities or dissimilarities. These
motifs were compared and validated for their biological
affinity. Future extensions of this method will focus on
improved design of affinity matrices that allow spatio-
temporal analysis with the same objectives.
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