125 research outputs found

    Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations

    Get PDF
    In the past decade, there has been a massive growth in the horizontal drilling and hydraulic fracturing of shale gas and tight oil reservoirs to exploit formerly inaccessible or unprofitable energy resources in rock formations with low permeability. In North America, these unconventional domestic sources of natural gas and oil provide an opportunity to achieve energy self-sufficiency and to reduce greenhouse gas emissions when displacing coal as a source of energy in power plants. However, fugitive methane emissions in the production process may counter the benefit over coal with respect to climate change and therefore need to be well quantified. Here we demonstrate that positive methane anomalies associated with the oil and gas industries can be detected from space and that corresponding regional emissions can be constrained using satellite observations. On the basis of a mass-balance approach, we estimate that methane emissions for two of the fastest growing production regions in the United States, the Bakken and Eagle Ford formations, have increased by 990 ± 650 ktCH4 yr−1 and 530 ± 330 ktCH4 yr−1 between the periods 2006–2008 and 2009–2011. Relative to the respective increases in oil and gas production, these emission estimates correspond to leakages of 10.1% ± 7.3% and 9.1% ± 6.2% in terms of energy content, calling immediate climate benefit into question and indicating that current inventories likely underestimate the fugitive emissions from Bakken and Eagle Ford

    How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    Get PDF
    Methane's (CH4) large global warming potential (Shindell et al., 2012) and likely increasing future emissions due to global warming feedbacks emphasize its importance to anthropogenic greenhouse warming (IPCC, 2007). Furthermore, CH4 regulation has far greater near-term climate change mitigation potential versus carbon dioxide CO2, the other major anthropogenic Greenhouse Gas (GHG) (Shindell et al., 2009). Uncertainties in CH4 budgets arise from the poor state of knowledge of CH4 sources - in part from a lack of sufficiently accurate assessments of the temporal and spatial emissions and controlling factors of highly variable anthropogenic and natural CH4 surface fluxes (IPCC, 2007) and the lack of global-scale (satellite) data at sufficiently high spatial resolution to resolve sources. Many important methane (and other trace gases) sources arise from urban and mega-urban landscapes where anthropogenic activities are centered - most of humanity lives in urban areas. Studying these complex landscape tapestries is challenged by a wide and varied range of activities at small spatial scale, and difficulty in obtaining up-to-date landuse data in the developed world - a key desire of policy makers towards development of effective regulations. In the developing world, challenges are multiplied with additional political access challenges. As high spatial resolution satellite and airborne data has become available, activity mapping applications have blossomed - i.e., Google maps; however, tap a minute fraction of remote sensing capabilities due to limited (three band) spectral information. Next generation approaches that incorporate high spatial resolution hyperspectral and ultraspectral data will allow detangling of the highly heterogeneous usage megacity patterns by providing diagnostic identification of chemical composition from solids (refs) to gases (refs). To properly enable these next generation technologies for megacity include atmospheric radiative transfer modeling the complex and often aerosol laden, humid, urban microclimates, atmospheric transport and profile monitoring, spatial resolution, temporal cycles (diurnal and seasonal which involve interactions with the surrounding environment diurnal and seasonal cycles) and representative measurement approaches given traffic realities. Promising approaches incorporate contemporaneous airborne remote sensing and in situ measurements, nocturnal surface surveys, with ground station measuremen

    SCIAMACHY: The new Level 0-1 Processor

    Get PDF
    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) is a scanning nadir and limb spectrometer covering the wavelength range from 212 nm to 2386 nm in 8 channels. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002 on the ENVISAT platform. After the platform failure in April 2012, SCIAMACHY is now in the postprocessing phase F. SCIAMACHY�s originally specified in-orbit lifetime was double the planned lifetime. SCIAMACHY was designed to measure column densities and vertical profiles of trace gas species in the mesosphere, in the stratosphere and in the troposphere (Bovensmann et al., 1999). It can detect a large amount of atmospheric gases (e.g. O3 , H2CO, CHOCHO, SO2 , BrO, OClO, NO2 , H2O, CO, CH4 , among others ) and can provide information about aerosols and clouds. The operational processing of SCIAMACHY is split into Level 0-1 processing (essentially providing calibrated radiances) and Level 1-2 processing providing geophysical products. The operational Level 0-1 processor has been completely re-coded and embedded in a newly developed framework that speeds up processing considerably. In the frame of the SCIAMACHY Quality Working Group activities, ESA is continuing the improvement of the archived data sets. Currently Version 9 of the Level 0-1 processor is being implemented. It will include An updated degradation correction Several improvements in the SWIR spectral range like a better dark correction, an improved dead & bad pixel characterisation and an improved spectral calibration Improvements to the polarisation correction algorithm Improvements to the geolocation by a better pointing characterisation Additionally a new format for the Level 1b and Level 1c will be implemented. The version 9 products will be available in netCDF version 4 that is aligned with the formats of the GOME -1 and Sentinel missions. We will present the first results of the new Level 0-1 processing in this paper

    Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    Get PDF
    Stratospheric profiles of methane (CH4_{4}) and carbon dioxide (CO2_{2}) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called onion peeling DOAS (ONPD), which combines an onion peeling approach with a weighting function DOAS (differential optical absorption spectroscopy) fit in the spectral region between 1559 and 1671 nm. By use of updated pointing information and optimisation of the data selection as well as of the retrieval approach, the altitude range for reasonable CH4_{4} could be broadened from 20 to 40 km to about 17 to 45 km. Furthermore, the quality of the derived CO2_{2} has been assessed such that now the first stratospheric profiles (17–45 km) of CO2_{2} from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5–10% for CH4_{4} and 2–3% for CO2_{2}. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4_{4} and CO2_{2} stratospheric data sets covering the whole SCIAMACHY time series (August 2002–April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4_{4} and CO2_{2} 2 trends have been estimated. CH4_{4} trends above about 20 km are not significantly different from zero and the trend at 17 km is about 3 ppbvyear−1^{-1}. The derived CO2_{2} trends show a general decrease with altitude with values of about 1.9 ppmvyear−1^{-1} at 21 km and about 1.3 ppmvyear−1^{-1} at 39 km. These results are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere

    SCIAMACHY: Level 0-1 Processor V9 and Phase F Re-processing

    Get PDF
    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) is a scanning nadir and limb spectrometer covering the wavelength range from 212 nm to 2386 nm in 8 channels. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002 on the ENVISAT platform. After the platform failure in April 2012, SCIAMACHY is now in the postprocessing phase F. Its originally specified in-orbit lifetime was double the planned lifetime. SCIAMACHY was designed to measure column densities and vertical profiles of trace gas species in the mesosphere, in the stratosphere and in the troposphere (Bovensmann et al., 1999). It can detect a large amount of atmospheric gases (e.g. O3 , H2CO, CHOCHO, SO2 , BrO, OClO, NO2 , H2O, CO, CH4 , among others ) and can provide information about aerosols and clouds. The operational processing of SCIAMACHY is split into Level 0-1 processing (essentially providing calibrated radiances) and Level 1-2 processing providing geophysical products. The operational Level 0-1 processor has been completely re-coded and embedded in a newly developed framework that speeds up processing considerably. In the frame of the SCIAMACHY Quality Working Group activities, ESA is continuing the improvement of the archived data sets. Version 9 of the Level 0-1 processor includes - An updated degradation correction - Improvements to the polarisation correction algorithm - Improvements to the geolocation by a better pointing characterisation - Several improvements in the SWIR spectral range like a better dark correction, an improved dead & bad pixel characterisation and an improved spectral calibration The new format for the Level 1b and Level 1c will be netCDF V4. We will present the verification results and the results of the mission re-processing

    Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the Methane Airborne MAP (MAMAP) instrument during the CO2 and Methane (CoMet) campaign

    Get PDF
    Methane (CH4) is the second most important anthropogenic greenhouse gas, whose atmospheric concentration is modulated by human-induced activities, and it has a larger global warming potential than carbon dioxide (CO2). Because of its short atmospheric lifetime relative to that of CO2, the reduction of the atmospheric abundance of CH4 is an attractive target for short-term climate mitigation strategies. However, reducing the atmospheric CH4 concentration requires a reduction of its emissions and, therefore, knowledge of its sources. For this reason, the CO2 and Methane (CoMet) campaign in May and June 2018 assessed emissions of one of the largest CH4 emission hot spots in Europe, the Upper Silesian Coal Basin (USCB) in southern Poland, using top-down approaches and inventory data. In this study, we will focus on CH4 column anomalies retrieved from spectral radiance observations, which were acquired by the 1D nadir-looking passive remote sensing Methane Airborne MAPper (MAMAP) instrument, using the weighting-function-modified differential optical absorption spectroscopy (WFM-DOAS) method. The column anomalies, combined with wind lidar measurements, are inverted to cross-sectional fluxes using a mass balance approach. With the help of these fluxes, reported emissions of small clusters of coal mine ventilation shafts are then assessed. The MAMAP CH4 column observations enable an accurate assignment of observed fluxes to small clusters of ventilation shafts. CH4 fluxes are estimated for four clusters with a total of 23 ventilation shafts, which are responsible for about 40 % of the total CH4 mining emissions in the target area. The observations were made during several overflights on different days. The final average CH4 fluxes for the single clusters (or sub-clusters) range from about 1 to 9 t CH4 h−1 at the time of the campaign. The fluxes observed at one cluster during different overflights vary by as much as 50 % of the average value. Associated errors (1σ) are usually between 15 % and 59 % of the average flux, depending mainly on the prevailing wind conditions, the number of flight tracks, and the magnitude of the flux itself. Comparison to known hourly emissions, where available, shows good agreement within the uncertainties. If only emissions reported annually are available for comparison with the observations, caution is advised due to possible fluctuations in emissions during a year or even within hours. To measure emissions even more precisely and to break them down further for allocation to individual shafts in a complex source region such as the USCB, imaging remote sensing instruments are recommended

    A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor

    Get PDF
    Carbon monoxide (CO) is an important atmospheric constituent affecting air quality, and methane (CH4_{4}) is the second most important greenhouse gas contributing to human-induced climate change. Detailed and continuous observations of these gases are necessary to better assess their impact on climate and atmospheric pollution. While surface and airborne measurements are able to accurately determine atmospheric abundances on local scales, global coverage can only be achieved using satellite instruments. The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite, which was successfully launched in October 2017, is a spaceborne nadirviewing imaging spectrometer measuring solar radiation reflected by the Earth in a push-broom configuration. It has a wide swath on the terrestrial surface and covers wavelength bands between the ultraviolet (UV) and the shortwave infrared (SWIR), combining a high spatial resolution with daily global coverage. These characteristics enable the determination of both gases with an unprecedented level of detail on a global scale, introducing new areas of application. Abundances of the atmospheric column-averaged dry air mole fractions XCO and XCH4_{4} are simultaneously retrieved from TROPOMI’s radiance measurements in the 2:3 μm spectral range of the SWIR part of the solar spectrum using the scientific retrieval algorithm Weighting Function Modified Differential Optical Absorption Spectroscopy (WFMDOAS). This algorithm is intended to be used with the operational algorithms for mutual verification and to provide new geophysical insights. We introduce the algorithm in detail, including expected error characteristics based on synthetic data, a machine-learning-based quality filter, and a shallow learning calibration procedure applied in the post-processing of the XCH4_{4} data. The quality of the results based on real TROPOMI data is assessed by validation with ground-based Fourier transform spectrometer (FTS) measurements providing realistic error estimates of the satellite data: the XCO data set is characterised by a random error of 5:1 ppb (5:8 %) and a systematic error of 1:9 ppb (2:1 %); the XCH4_{4} data set exhibits a random error of 14:0 ppb (0:8 %) and a systematic error of 4:3 ppb (0:2 %). The natural XCO and XCH4_{4} variations are well-captured by the satellite retrievals, which is demonstrated by a high correlation with the validation data (R = 0:97 for XCO and R D 0:91 for XCH4_{4} based on daily averages). We also present selected results from the mission start until the end of 2018, including a first comparison to the operational products and examples of the detection of emission sources in a single satellite overpass, such as CO emissions from the steel industry and CH4_{4} emissions from the energy sector, which potentially allows for the advance of emission monitoring and air quality assessments to an entirely new level
    • …
    corecore