1,803 research outputs found

    Activation gaps for the fractional quantum Hall effect: realistic treatment of transverse thickness

    Full text link
    The activation gaps for fractional quantum Hall states at filling fractions ν=n/(2n+1)\nu=n/(2n+1) are computed for heterojunction, square quantum well, as well as parabolic quantum well geometries, using an interaction potential calculated from a self-consistent electronic structure calculation in the local density approximation. The finite thickness is estimated to make ∼\sim30% correction to the gap in the heterojunction geometry for typical parameters, which accounts for roughly half of the discrepancy between the experiment and theoretical gaps computed for a pure two dimensional system. Certain model interactions are also considered. It is found that the activation energies behave qualitatively differently depending on whether the interaction is of longer or shorter range than the Coulomb interaction; there are indications that fractional Hall states close to the Fermi sea are destabilized for the latter.Comment: 32 pages, 13 figure

    Composite fermion state of spin-orbit coupled bosons

    Full text link
    We consider spinor Bose gas with the isotropic Rashba spin-orbit coupling in 2D. We argue that at low density its groundstate is a composite fermion state with a Chern-Simons gauge field and filling factor one. The chemical potential of such a state scales with the density as \mu \propto n^{3/2}. This is a lower energy per particle than \mu \propto n for the earlier suggested groundstate candidates: a condensate with broken time-reversal symmetry and a spin density wave state.Comment: 15 pages, 7 figures, Revte

    Segregation, precipitation, and \alpha-\alpha' phase separation in Fe-Cr alloys: a multi-scale modelling approach

    Full text link
    Segregation, precipitation, and phase separation in Fe-Cr systems is investigated. Monte Carlo simulations using semiempirical interatomic potential, first-principles total energy calculations, and experimental spectroscopy are used. In order to obtain a general picture of the relation of the atomic interactions and properties of Fe-Cr alloys in bulk, surface, and interface regions several complementary methods has to be used. Using Exact Muffin-Tin Orbitals method the effective chemical potential as a function of Cr content (0-15 at.% Cr) is calculated for a surface, second atomic layer and bulk. At ~10 at.% Cr in the alloy the reversal of the driving force of a Cr atom to occupy either bulk or surface sites is obtained. The Cr containing surfaces are expected when the Cr content exceeds ~10 at.%. The second atomic layer forms about 0.3 eV barrier for the migration of Cr atoms between bulk and surface atomic layer. To get information on Fe-Cr in larger scales we use semiempirical methods. Using combined Monte Carlo molecular dynamics simulations, based on semiempirical potential, the precipitation of Cr into isolated pockets in bulk Fe-Cr and the upper limit of the solubility of Cr into Fe layers in Fe/Cr layer system is studied. The theoretical predictions are tested using spectroscopic measurements. Hard X-ray photoelectron spectroscopy and Auger electron spectroscopy investigations were carried out to explore Cr segregation and precipitation in Fe/Cr double layer and Fe_0.95Cr_0.05 and Fe_0.85Cr_0.15 alloys. Initial oxidation of Fe-Cr was investigated experimentally at 10^-8 Torr pressure of the spectrometers showing intense Cr_2O_3 signal. Cr segregation and the formation of Cr rich precipitates were traced by analysing the experimental spectral intensities with respect to annealing time, Cr content, and kinetic energy of the exited electron.Comment: 16 pages, 14 figures, 52 reference

    The Atomic Slide Puzzle: Self-Diffusion of an Impure Atom

    Full text link
    In a series of recent papers van Gastel et al have presented first experimental evidence that impure, Indium atoms, embedded into the first layer of a Cu(001) surface, are not localized within the close-packed surface layers but make concerted, long excursions visualized in a series of STM images. Such excursions occur due to continuous reshuffling of the surface following the position exchanges of both impure and host atoms with the naturally occuring surface vacancies. Van Gastel et al have also formulated an original lattice-gas type model with asymmetric exchange probabilities, whose numerical solution is in a good agreement with the experimental data. In this paper we propose an exact lattice solution of several versions of this model.Comment: Latex, 4 pages, 2 figures, to appear in Phys. Rev. E (RC

    Universal Equilibrium Currents in the Quantum Hall Fluid

    Full text link
    The equilibrium current distribution in a quantum Hall fluid that is subjected to a slowly varying confining potential is shown to generally consist of strips or channels of current, which alternate in direction, and which have universal integrated strengths. A measurement of these currents would yield direct independent measurements of the proper quasiparticle and quasihole energies in the fractional quantum Hall states.Comment: 4 pages, Revte

    Integral and fractional Quantum Hall Ising ferromagnets

    Full text link
    We compare quantum Hall systems at filling factor 2 to those at filling factors 2/3 and 2/5, corresponding to the exact filling of two lowest electron or composite fermion (CF) Landau levels. The two fractional states are examples of CF liquids with spin dynamics. There is a close analogy between the ferromagnetic (spin polarization P=1) and paramagnetic (P=0) incompressible ground states that occur in all three systems in the limits of large and small Zeeman spin splitting. However, the excitation spectra are different. At filling factor 2, we find spin domains at half-polarization (P=1/2), while antiferromagnetic order seems most favorable in the CF systems. The transition between P=0 and 1, as seen when e.g. the magnetic field is tilted, is also studied by exact diagonalization in toroidal and spherical geometries. The essential role of an effective CF-CF interaction is discussed, and the experimentally observed incompresible half-polarized state is found in some models

    Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below

    Get PDF
    This paper is devoted to a deeper understanding of the heat flow and to the refinement of calculus tools on metric measure spaces (X,d,m). Our main results are: - A general study of the relations between the Hopf-Lax semigroup and Hamilton-Jacobi equation in metric spaces (X,d). - The equivalence of the heat flow in L^2(X,m) generated by a suitable Dirichlet energy and the Wasserstein gradient flow of the relative entropy functional in the space of probability measures P(X). - The proof of density in energy of Lipschitz functions in the Sobolev space W^{1,2}(X,d,m). - A fine and very general analysis of the differentiability properties of a large class of Kantorovich potentials, in connection with the optimal transport problem. Our results apply in particular to spaces satisfying Ricci curvature bounds in the sense of Lott & Villani [30] and Sturm [39,40], and require neither the doubling property nor the validity of the local Poincar\'e inequality.Comment: Minor typos corrected and many small improvements added. Lemma 2.4, Lemma 2.10, Prop. 5.7, Rem. 5.8, Thm. 6.3 added. Rem. 4.7, Prop. 4.8, Prop. 4.15 and Thm 4.16 augmented/reenforced. Proof of Thm. 4.16 and Lemma 9.6 simplified. Thm. 8.6 corrected. A simpler axiomatization of weak gradients, still equivalent to all other ones, has been propose

    Quasiparticles and excitons for the Pfaffian quantum Hall state

    Get PDF
    We propose trial wave functions for quasiparticle and exciton excitations of the Moore-Read Pfaffian fractional quantum Hall states, both for bosons and for fermions, and study these numerically. Our construction of trial wave functions employs a picture of the bosonic Moore-Read state as a symmetrized double layer composite fermion state. We obtain the number of independent angular momentum multiplets of quasiparticle and exciton trial states for systems of up to 20 electrons. We find that the counting for quasielectrons at large angular momentum on the sphere matches that expected from the CFT which describes the Moore-Read state's boundary theory. In particular, the counting for quasielectrons is the same as for quasiholes, in accordance with the idea that the CFT describing both sides of the FQH plateau should be the same. We also show that our trial wave functions have good overlaps with exact wave functions obtained using various interactions, including second Landau level Coulomb interactions and the 3-body delta interaction for which the Pfaffian states and their quasiholes are exact ground states. We discuss how these results relate to recent work by Sreejith et al. on a similar set of trial wave functions for excitations over the Pfaffian state as well as to earlier work by Hansson et al., which has produced trial wave functions for quasiparticles based on conformal field theory methods and by Bernevig and Haldane, which produced trial wave functions based on clustering properties and `squeezing'.Comment: 22 pages, 18 figure

    Maximum-entropy theory of steady-state quantum transport

    Get PDF
    We develop a theoretical framework for describing steady-state quantum transport phenomena, based on the general maximum-entropy principle of nonequilibrium statistical mechanics. The general form of the many-body density matrix is derived, which contains the invariant part of the current operator that guarantees the nonequilibrium and steady-state character of the ensemble. Several examples of the theory are given, demonstrating the relationship of the present treatment to the widely used scattering-state occupation schemes at the level of the self-consistent single-particle approximation. The latter schemes are shown not to maximize the entropy, except in certain limits

    Island diffusion on metal fcc(100) surfaces

    Get PDF
    We present Monte Carlo simulations for the size and temperature dependence of the diffusion coefficient of adatom islands on the Cu(100) surface. We show that the scaling exponent for the size dependence is not a constant but a decreasing function of the island size and approaches unity for very large islands. This is due to a crossover from periphery dominated mass transport to a regime where vacancies diffuse inside the island. The effective scaling exponents are in good agreement with theory and experiments.Comment: 13 pages, 2 figures, to be published in Phys. Rev. Let
    • …
    corecore