290 research outputs found

    The spectral energy distribution of galaxies at z > 2.5: Implications from the Herschel/SPIRE color-color diagram

    Full text link
    We use the Herschel SPIRE color-color diagram to study the spectral energy distribution (SED) and the redshift estimation of high-z galaxies. We compiled a sample of 57 galaxies with spectroscopically confirmed redshifts and SPIRE detections in all three bands at z=2.5−6.4z=2.5-6.4, and compared their average SPIRE colors with SED templates from local and high-z libraries. We find that local SEDs are inconsistent with high-z observations. The local calibrations of the parameters need to be adjusted to describe the average colors of high-z galaxies. For high-z libraries, the templates with an evolution from z=0 to 3 can well describe the average colors of the observations at high redshift. Using these templates, we defined color cuts to divide the SPIRE color-color diagram into different regions with different mean redshifts. We tested this method and two other color cut methods using a large sample of 783 Herschel-selected galaxies, and find that although these methods can separate the sample into populations with different mean redshifts, the dispersion of redshifts in each population is considerably large. Additional information is needed for better sampling.Comment: 17 pages, 14 figures, accepted for publication in A&

    Ultraviolet to infrared emission of z>1 galaxies: Can we derive reliable star formation rates and stellar masses?

    Full text link
    We seek to derive star formation rates (SFR) and stellar masses (M_star) in distant galaxies and to quantify the main uncertainties affecting their measurement. We explore the impact of the assumptions made in their derivation with standard calibrations or through a fitting process, as well as the impact of the available data, focusing on the role of IR emission originating from dust. We build a sample of galaxies with z>1, all observed from the UV to the IR (rest frame). The data are fitted with the code CIGALE, which is also used to build and analyse a catalogue of mock galaxies. Models with different SFHs are introduced. We define different set of data, with or without a good sampling of the UV range, NIR, and thermal IR data. The impact of these different cases on the determination of M_star and SFR are analysed. Exponentially decreasing models with a redshift formation of the stellar population z ~8 cannot fit the data correctly. The other models fit the data correctly at the price of unrealistically young ages when the age of the single stellar population is taken to be a free parameter. The best fits are obtained with two stellar populations. As long as one measurement of the dust emission continuum is available, SFR are robustly estimated whatever the chosen model is, including standard recipes. M_star measurement is more subject to uncertainty, depending on the chosen model and the presence of NIR data, with an impact on the SFR-M_star scatter plot. Conversely, when thermal IR data from dust emission are missing, the uncertainty on SFR measurements largely exceeds that of stellar mass. Among all physical properties investigated here, the stellar ages are found to be the most difficult to constrain and this uncertainty acts as a second parameter in SFR measurements and as the most important parameter for M_star measurements.Comment: 14 pages, 14 figures, accepted for publication A&

    Cross-Identification Performance from Simulated Detections: GALEX and SDSS

    Full text link
    We investigate the quality of associations of astronomical sources from multi-wavelength observations using simulated detections that are realistic in terms of their astrometric accuracy, small-scale clustering properties and selection functions. We present a general method to build such mock catalogs for studying associations, and compare the statistics of cross-identifications based on angular separation and Bayesian probability criteria. In particular, we focus on the highly relevant problem of cross-correlating the ultraviolet Galaxy Evolution Explorer (GALEX) and optical Sloan Digital Sky Survey (SDSS) surveys. Using refined simulations of the relevant catalogs, we find that the probability thresholds yield lower contamination of false associations, and are more efficient than angular separation. Our study presents a set of recommended criteria to construct reliable cross-match catalogs between SDSS and GALEX with minimal artifacts.Comment: 7 pages, 9 figures; ApJ in pres

    Modeling the connection between ultraviolet and infrared galaxy populations across cosmic times

    Get PDF
    Using a phenomenological approach, we self-consistently model the redshift evolution of the ultraviolet (UV) and infrared (IR) luminosity functions across cosmic time, as well as a range of observed IR properties of UV-selected galaxy population. This model is an extension of the 2SFM (2 star-formation modes) formalism, which is based on the observed "main-sequence" of star-forming galaxies, i.e. a strong correlation between their stellar mass and their star formation rate (SFR), and a secondary population of starbursts with an excess of star formation. The balance between the UV light from young, massive stars and the dust-reprocessed IR emission is modeled following the empirical relation between the attenuation (IRX for IR excess hereafter) and the stellar mass, assuming a scatter of 0.4\,dex around this relation. We obtain a good overall agreement with the measurements of the IR luminosity function up to z~3 and the UV luminosity functions up to z~6, and show that a scatter on the IRX-M relation is mandatory to reproduce these observables. We also naturally reproduce the observed, flat relation between the mean IRX and the UV luminosity at LUV>109.5 L⊙. Finally, we perform predictions of the UV properties and detectability of IR-selected samples and the vice versa, and discuss the results in the context of the UV-rest-frame and sub-millimeter surveys of the next decade

    AKARI/IRC Broadband Mid-infrared data as an indicator of Star Formation Rate

    Full text link
    AKARI/Infrared Camera (IRC) Point Source Catalog provides a large amount of flux data at {\it S9W} (9 μm9\ {\rm \mu m}) and {\it L18W} (18 μm18\ {\rm \mu m}) bands. With the goal of constructing Star-Formation Rate(SFR) calculations using IRC data, we analyzed an IR selected GALEX-SDSS-2MASS-AKARI(IRC/Far-Infrared Surveyor) sample of 153 nearby galaxies. The far-infrared fluxes were obtained from AKARI diffuse maps to correct the underestimation for extended sources raised by the point-spread function photometry. SFRs of these galaxies were derived by the spectral energy distribution fitting program CIGALE. In spite of complicated features contained in these bands, both the {\it S9W} and {\it L18W} emission correlate with the SFR of galaxies. The SFR calibrations using {\it S9W} and {\it L18W} are presented for the first time. These calibrations agree well with previous works based on Spitzer data within the scatters, and should be applicable to dust-rich galaxies.Comment: PASJ, in pres

    Single parameter galaxy classification: The Principal Curve through the multi-dimensional space of galaxy properties

    Full text link
    We propose to describe the variety of galaxies from SDSS by using only one affine parameter. To this aim, we build the Principal Curve (P-curve) passing through the spine of the data point cloud, considering the eigenspace derived from Principal Component Analysis of morphological, physical and photometric galaxy properties. Thus, galaxies can be labeled, ranked and classified by a single arc length value of the curve, measured at the unique closest projection of the data points on the P-curve. We find that the P-curve has a "W" letter shape with 3 turning points, defining 4 branches that represent distinct galaxy populations. This behavior is controlled mainly by 2 properties, namely u-r and SFR. We further present the variations of several galaxy properties as a function of arc length. Luminosity functions variate from steep Schechter fits at low arc length, to double power law and ending in Log-normal fits at high arc length. Galaxy clustering shows increasing autocorrelation power at large scales as arc length increases. PCA analysis allowed to find peculiar galaxy populations located apart from the main cloud of data points, such as small red galaxies dominated by a disk, of relatively high stellar mass-to-light ratio and surface mass density. The P-curve allows not only dimensionality reduction, but also provides supporting evidence for relevant physical models and scenarios in extragalactic astronomy: 1) Evidence for the hierarchical merging scenario in the formation of a selected group of red massive galaxies. These galaxies present a log-normal r-band luminosity function, which might arise from multiplicative processes involved in this scenario. 2) Connection between the onset of AGN activity and star formation quenching, which appears in green galaxies when transitioning from blue to red populations. (Full abstract in downloadable version)Comment: Full abstract in downloadable versio

    Perceived Realism of Pedestrian Crowds Trajectories in VR

    Get PDF
    Crowd simulation algorithms play an essential role in populating Virtual Reality (VR) environments with multiple autonomous humanoid agents. The generation of plausible trajectories can be a significant computational cost for real-time graphics engines, especially in untethered and mobile devices such as portable VR devices. Previous research explores the plausibility and realism of crowd simulations on desktop computers but fails to account the impact it has on immersion. This study explores how the realism of crowd trajectories affects the perceived immersion in VR. We do so by running a psychophysical experiment in which participants rate the realism of real/synthetic trajectories data, showing similar level of perceived realism
    • …
    corecore