396 research outputs found
Recommended from our members
Homolytic activation of hydrocarbons and hydrogen by persistent metal radicals
The following Re radicals were studied: Re(CO)[sub 3](PR[sub 3])[sub 2], Re(diphos)[sub 2](CO)Cl, ([eta][sup 5]-CPh[sub 3])Re(CO)[sub 3], and Re(CO)[sub 3](PR[sub 3])[sub 2]-R (R=Me, benzyl)
Temperature- and Solvent-Dependent Binding of Dihydrogen in Iridium Pincer Complexes
Mixtures of deuterium labeled complexes (p-XPOCOP)IrH2–xDx (1–6-d0–2) {POCOP = [C6H2-1,3-[OP(tBu)2]2; X = MeO (1), Me (2), H (3), F (4), C6F5 (5), and ArF = 3,5-(CF3)2-C6H3 (6)} have been generated by reaction of (p-XPOCOP)IrH2 complexes with HD gas in benzene followed by removal of the solvent under high vacuum. Spectroscopic analysis employing 1H and 2D NMR reveals significant temperature and solvent dependent isotopic shifts and HD coupling constants. Complexes 1–6-d1 in toluene and pentane between 296 K and 213 K exhibit coupling constants JHD of 3.8–9.0 Hz, suggesting the presence of an elongated H2 ligand, which is confirmed by T1(min) measurements of complexes 1, 3 and 6 in toluene-d8. In contrast, complex 6-d1 exhibits JHD = 0 Hz in CH2Cl2 or CDCl2F while isotopic shifts up to −4.05 ppm have been observed by lowering the temperature from 233 K to 133 K in CDCl2F. The large and temperature dependent isotope effects are attributed to non-statistical occupation of two different hydride environments. The experimental observations are interpreted in terms of a two component model involving rapid equilibration of solvated Ir(III) dihydride and Ir(I) dihydrogen structures
Bis{1,2-bisÂ[bisÂ(3-methÂoxyÂpropÂyl)phosphanÂyl]ethane-κ2 P,P′}dichloridoÂosmium(II)
In the centrosymmetric title compound, [OsCl2(C18H40O4P2)2], the OsII atom adopts a trans-OsCl2P4 geometry, arising from its coordination by two chelating diphosphane ligands and two chloride ions. One of the methÂoxy side chains of the ligand is disordered over two orientations in a 0.700 (6):0.300 (6) ratio
Organoiridium complexes : anticancer agents and catalysts
Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar Ir(I) complexes, such as Crabtree's hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl Ir(III) complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d(6) Ir(III) centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C^C-chelating ligands can even stabilize Ir(IV) and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar Ir(I) complexes because of their structural and electronic similarity to Pt(II) anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich Ir(III) anticancer complexes. These complexes with the formula [(Cp(x))Ir(L^L')Z](0/n+) (with Cp* or extended Cp* and L^L' = chelated C^N or N^N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form Ir(III)-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium complexes containing an imine as a monodentate ligand have prooxidant activity, which appears to involve catalytic hydride transfer to oxygen and the generation of hydrogen peroxide in cells. In addition, researchers have designed inert Ir(III) complexes as potent kinase inhibitors. Octahedral cyclometalated Ir(III) complexes not only serve as cell imaging agents, but can also inhibit tumor necrosis factor α, promote DNA oxidation, generate singlet oxygen when photoactivated, and exhibit good anticancer activity. Although relatively unexplored, organoiridium chemistry offers unique features that researchers can exploit to generate novel diagnostic agents and drugs with new mechanisms of action
The exchange activities of [Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases
[Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) catalyzes the reversible reduction of methenyltetrahydromethanopterin (methenyl-H4MPT+) with H2 to methylene-H4MPT, a reaction involved in methanogenesis from H2 and CO2 in many methanogenic archaea. The enzyme harbors an iron-containing cofactor, in which a low-spin iron is complexed by a pyridone, two CO and a cysteine sulfur. [Fe] hydrogenase is thus similar to [NiFe] and [FeFe] hydrogenases, in which a low-spin iron carbonyl complex, albeit in a dinuclear metal center, is also involved in H2 activation. Like the [NiFe] and [FeFe] hydrogenases, [Fe] hydrogenase catalyzes an active exchange of H2 with protons of water; however, this activity is dependent on the presence of the hydride-accepting methenyl-H4MPT+. In its absence the exchange activity is only 0.01% of that in its presence. The residual activity has been attributed to the presence of traces of methenyl-H4MPT+ in the enzyme preparations, but it could also reflect a weak binding of H2 to the iron in the absence of methenyl-H4MPT+. To test this we reinvestigated the exchange activity with [Fe] hydrogenase reconstituted from apoprotein heterologously produced in Escherichia coli and highly purified iron-containing cofactor and found that in the absence of added methenyl-H4MPT+ the exchange activity was below the detection limit of the tritium method employed (0.1 nmol min−1 mg−1). The finding reiterates that for H2 activation by [Fe] hydrogenase the presence of the hydride-accepting methenyl-H4MPT+ is essentially required. This differentiates [Fe] hydrogenase from [FeFe] and [NiFe] hydrogenases, which actively catalyze H2/H2O exchange in the absence of exogenous electron acceptors
- …