61 research outputs found

    Retroreflection Focusing Schlieren System

    Get PDF
    A retroreflective type focusing schlieren system which permits the light source to be positioned on the optic side of the system is introduced. The system includes an extended light source, as opposed to a point source, located adjacent to a beam splitter which projects light through the flow field onto a reflecting grating in the form of a grid which generates sheets of light that are directed back through the flow field and the beam splitter onto a primary lens behind which is located a cut-off grid having a grid pattern which corresponds to the grid pattern of the reflecting grating. The cut-off grid is adjustably positioned behind the primary lens and an image plane for imaging the turbulence is adjustably located behind the cut-off grid

    Photogrammetric recession measurements of an ablating surface

    Get PDF
    An instrument and method for measuring the time history of recession of an ablating surface of a test article during testing in a high enthalpy thermal test facility, such as an arcjet. The method advances prior art by providing time-history data over the full ablating surface without targets and without any modifications to the test article. The method is non-intrusive, simple to implement, requires no external light source, and does not interfere with normal operations of the arcjet facility

    Turbulence investigation of the nasa common research model wing tip vortex

    Get PDF
    The paper presents high-speed stereo particle image velocimetry investigation of the NASA Common Research Model wing tip vortex. A three-percent scaled semi span model, without nacelle and pylon, was tested in the 32- by 48-inch In draft tunnel, at the Fluid Mechanics Laboratory at the NASA Ames Research Center. Turbulence investigation of the wing tip vortex is presented. Measurements of the wing-tip vortex were performed in a vertical cross-stream plane three tip-chords downstream of the wing tip trailing edge with a 2 kHz sampling rate. Experimental data are analyzed in the invariant anisotropy maps for three various angles of attack (0 degrees, 2 degrees, and 4 degrees) and the same speed generated in the tunnel (V-infinity = 50 m/s). This corresponds to a chord Reynolds number 2.68.10(5), where the chord length of 3" is considered the characteristic length. The region of interest was x = 220 mm and y = 90 mm. The 20 000 particle image velocimetry samples were acquired at each condition. Velocity fields and turbulence statistics are given for all cases, as well as turbulence structure in the light of the invariant theory. Prediction of the wing tip vortices is still a challenge for the computational fluid dynamics codes due to significant pressure and velocity gradients

    Measurements of Parachute Dynamics in the World's Largest Wind Tunnel by Stereo Photogrammetry

    Get PDF
    Between 2012 and 2017, parachutes for four NASA Projects were tested in the 80- by 120-Ft test section of the National Full-Scale Aerodynamic Complex (NFAC) at NASA Ames Research Center. These projects were: (1) Low-Density Supersonic Decelerator (LDSD); (2) Capsule Parachute Assembly System (CPAS, for Orion); (3) Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight, a Mars mission); and (4) Mars 2020. In all tests stereo photogrammetry was used to measure time-dependent positions of features on the canopies. For the LDSD and CPAS tests, where the purpose was to study the trade-off between stability and drag of different parachute designs, the pendulum motion of the canopies about the riser attachment point was measured by calibrated cameras in the diffuser. The CPAS test also included static measurements where the inflated parachutes were pulled to the side by a system of tethers. The Insight tests were structural qualification tests where each canopy was packed in a bag and launched from a mortar. Cameras in the diffuser measured the trajectory of the bag and the stripping of the bag from the canopy. The Mars 2020 test was a workmanship verification test where the canopies were either launched from a mortar or deployed from a sleeve stretched along the tunnel axis. The deployments were recorded from many directions by thirteen high-speed cameras distributed in the diffuser and test section. Photogrammetry was not planned; however, after a tunnel-related accident ended the test prematurely, photogrammetric measurements were bootstrapped from the images to support the accident investigations. This paper describes how the photogrammetry measurements were made in each test and presents typical results

    Surface and Flow Field Measurements on the FAITH Hill Model

    Get PDF
    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detai

    Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    Get PDF
    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1 at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg

    Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow

    Get PDF
    This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program

    Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    Get PDF
    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system

    Background Oriented Schlieren (BOS) of a Supersonic Aircraft in Flight

    Get PDF
    This presentation describes the development and use of Background Oriented Schlieren (BOS) on a full-scale supersonic jet in flight. A series of flight tests was performed in October 2014 and February 2015 using the flora of the desert floor in the Supersonic Flight Corridor on the Edwards Air Force Base as a background. Flight planning was designed based on the camera resolution, the mean size and color of the predominant plants, and the navigation and coordination of two aircraft. Software used to process the image data was improved with additional utilities. The planning proved to be effective and the vast majority of the passes of the target aircraft were successfully recorded. Results were obtained that are the most detailed schlieren imagery of an aircraft in flight to date

    A Summary of the Experimental Results for a Generic Tractor-Trailer in the Ames Research Center 7- by 10-Foot and 12-Foot Wind Tunnels

    Get PDF
    Experimental measurements of a generic tractor-trailer were obtained in two wind tunnels at Ames Research Center. After a preliminary study at atmospheric conditions in the 7- by 10-Foot Wind Tunnel, additional testing was conducted at Reynolds numbers corresponding to full-scale highway speeds in the 12-Foot Pressure Wind Tunnel. To facilitate computational modeling, the 1:8-scale geometry, designated the Generic Conventional Model, included a simplified underbody and omitted many small-scale details. The measurements included overall and component forces and moments, static and dynamic surface pressures, and three-component particle image velocimetry. This summary report highlights the effects of numerous drag reduction concepts and provides details of the model installation in both wind tunnels. To provide a basis for comparison, the wind-averaged drag coefficient was tabulated for all configurations tested. Relative to the baseline configuration representative of a modern class-8 tractor-trailer, the most effective concepts were the trailer base flaps and trailer belly box providing a drag-coefficient reduction of 0.0855 and 0.0494, respectively. Trailer side skirts were less effective yielding a drag reduction of 0.0260. The database of this experimental effort is publicly available for further analysis
    corecore