3,271 research outputs found

    Entanglement properties of multipartite entangled states under the influence of decoherence

    Full text link
    We investigate entanglement properties of multipartite states under the influence of decoherence. We show that the lifetime of (distillable) entanglement for GHZ-type superposition states decreases with the size of the system, while for a class of other states -namely all graph states with constant degree- the lifetime is independent of the system size. We show that these results are largely independent of the specific decoherence model and are in particular valid for all models which deal with individual couplings of particles to independent environments, described by some quantum optical master equation of Lindblad form. For GHZ states, we derive analytic expressions for the lifetime of distillable entanglement and determine when the state becomes fully separable. For all graph states, we derive lower and upper bounds on the lifetime of entanglement. To this aim, we establish a method to calculate the spectrum of the partial transposition for all mixed states which are diagonal in a graph state basis. We also consider entanglement between different groups of particles and determine the corresponding lifetimes as well as the change of the kind of entanglement with time. This enables us to investigate the behavior of entanglement under re-scaling and in the limit of large (infinite) number of particles. Finally we investigate the lifetime of encoded quantum superposition states and show that one can define an effective time in the encoded system which can be orders of magnitude smaller than the physical time. This provides an alternative view on quantum error correction and examples of states whose lifetime of entanglement (between groups of particles) in fact increases with the size of the system.Comment: 27 pages, 11 figure

    Robust single-parameter quantized charge pumping

    Full text link
    This paper investigates a scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAs-GaAs gated nanowire. We find a remarkable robustness of the quantized regime against variations in the driving signal, which increases with applied rf power. This feature together with its simple configuration makes this device a potential module for a scalable source of quantized current.Comment: Submitted to Appl. Phys. Let

    Completeness of the classical 2D Ising model and universal quantum computation

    Full text link
    We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins w.r.t the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.Comment: 4 pages, 1 figure. Minor change

    Modelling of Plastic Anisotropy and Plastic Volume Change

    Get PDF
    An anisotropic material law for metallic materials is presented which is able to describe plastic volume changes in the elastic-plastic transition area. The modelling includes a mixed isotropic-kinematic hardening rule. The strategy of evolution is used to fit the material law to yield loci of X5CrNi18.10. The additional extension of the model by anisotropic hardening permits the description of the deformation anisotropy. Finally, the plane compression of a thick cylinder is used to show the effect of the material law used. Therefore the outer radius is equally reduced and the deformation behaviour of the inner radius is observed

    Fetal Urine Production in Late Pregnancy

    Get PDF
    Objective. Hourly fetal urine production rate (HFUPR) was studied in relation to both gestational age and the onset of spontaneous labor in normal term human pregnancies. Methods. Serial volume measurements were obtained from longitudinal ultrasound images of the fetal bladder at 1–5-minute intervals, and HFUPR was subsequently calculated. A total of 178 adequate bladder-filling cycles were recorded in 112 women, and the amniotic fluid index (AFI) was assessed. Results. HFUPR did not change significantly between 37 and 42 weeks' gestation. However, HFUPR decreased during the last 14 days prior to the onset of spontaneous labor (P < 0.005). No significant correlation was found between HFUPR and AFI, neither when measured at the same time nor when HFUPR and AFI were measured at various intervals in time. Conclusion. HFUPR falls before and in relation to the time of onset of labor rather than in relation to gestational age

    Parameter identification in a semilinear hyperbolic system

    Get PDF
    We consider the identification of a nonlinear friction law in a one-dimensional damped wave equation from additional boundary measurements. Well-posedness of the governing semilinear hyperbolic system is established via semigroup theory and contraction arguments. We then investigte the inverse problem of recovering the unknown nonlinear damping law from additional boundary measurements of the pressure drop along the pipe. This coefficient inverse problem is shown to be ill-posed and a variational regularization method is considered for its stable solution. We prove existence of minimizers for the Tikhonov functional and discuss the convergence of the regularized solutions under an approximate source condition. The meaning of this condition and some arguments for its validity are discussed in detail and numerical results are presented for illustration of the theoretical findings
    corecore