152 research outputs found

    Reconciling taxonomy and phylogenetic inference: formalism and algorithms for describing discord and inferring taxonomic roots

    Get PDF
    Although taxonomy is often used informally to evaluate the results of phylogenetic inference and find the root of phylogenetic trees, algorithmic methods to do so are lacking. In this paper we formalize these procedures and develop algorithms to solve the relevant problems. In particular, we introduce a new algorithm that solves a "subcoloring" problem for expressing the difference between the taxonomy and phylogeny at a given rank. This algorithm improves upon the current best algorithm in terms of asymptotic complexity for the parameter regime of interest; we also describe a branch-and-bound algorithm that saves orders of magnitude in computation on real data sets. We also develop a formalism and an algorithm for rooting phylogenetic trees according to a taxonomy. All of these algorithms are implemented in freely-available software.Comment: Version submitted to Algorithms for Molecular Biology. A number of fixes from previous versio

    N-acetyltransferase 2 (NAT2) gene polymorphisms in colon and lung cancer patients

    Get PDF
    BACKGROUND: N-acetyltransferase 2 (NAT2) metabolizes arylamines and hydrazines moeities found in many therapeutic drugs, chemicals and carcinogens. The gene encoding NAT2 is polymorphic, thus resulting in rapid or slow acetylator phenotypes. The acetylator status may, therefore, predispose drug-induced toxicities and cancer risks, such as bladder, colon and lung cancer. Indeed, some studies demonstrate a positive association between NAT2 rapid acetylator phenotype and colon cancer, but results are inconsistent. The role of NAT2 acetylation status in lung cancer is likewise unclear, in which both the rapid and slow acetylator genotypes have been associated with disease. METHODS: We investigated three genetic variations, c.481C>T, c.590G>A (p.R197Q) and c.857G>A (p.G286E), of the NAT2 gene, which are known to result in a slow acetylator phenotype. Using validated PCR-RFLP assays, we genotyped 243 healthy unrelated Caucasian control subjects, 92 colon and 67 lung cancer patients for these genetic variations. As there is a recent meta-analysis of NAT2 studies on colon cancer (unlike in lung cancer), we have also undertaken a systematic review of NAT2 studies on lung cancer, and we incorporated our results in a meta-analysis consisting of 16 studies, 3,865 lung cancer patients and 6,077 control subjects. RESULTS: We did not obtain statistically significant differences in NAT2 allele and genotype frequencies in colon cancer patients and control group. Certain genotypes, however, such as [c.590AA+c.857GA] and [c.590GA+c.857GA] were absent among the colon cancer patients. Similarly, allele frequencies in lung cancer patients and controls did not differ significantly. Nevertheless, there was a significant increase of genotypes [c.590GA] and [c.481CT+c.590GA], but absence of homozygous c.590AA and [c.590AA+c.857GA] in the lung cancer group. Meta-analysis of 16 NAT2 studies on lung cancer did not evidence an overall association of the rapid or slow acetylator status to lung cancer. Similarly, the summary odds ratios obtained with stratified meta-analysis based on ethnicity, and smoking status were not significant. CONCLUSION: Our study failed to show an overall association of NAT2 genotypes to either colon or lung cancer risk

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag

    Turnip yellow mosaic virus in Chinese cabbage in Spain: Commercial seed transmission and molecular characterization

    Full text link
    [EN] Seed transmission of Turnip yellow mosaic virus (TYMV, genus Tymovirus) was evaluated in the whole seeds and seedlings that emerged from three commercial Chinese cabbage (Brassica pekinensis) seed batches. Seedlings in the cotyledon stage and adult plants were assayed for TYMV by DAS-ELISA and confirmed by RT-PCR. The proportion of whole seeds infected with TYMV was at least 0.15 %. The seeds of the three seed batches were grown in Petri dishes, and surveyed in the cotyledon stage in trays that contained a peat:sand mixture grown in greenhouses or growth chambers, which were analysed in the cotyledon and adult stages. The seed-to-seedling transmission rate ranged from 2.5 % to 2.9 % in two different seed batches (lot-08 and lot-09, respectively). Spanish isolates derived from turnip (Sp-03) and Chinese cabbage (Sp-09 and Sp-13), collected in 2003, 2009 and 2013 in two different Spanish regions, were molecularly characterised by analysing the partial nucleotide sequences of three TYMV genome regions: partial RNA-dependent RNA polymerase (RdRp), methyltransferase (MTR) and coat protein (CP) genes. Phylogenetic analyses showed that the CP gene represented two different groups: TYMV-1 and TYMV-2. The first was subdivided into three subclades: European, Australian and Japanese. Spanish isolate Sp-03 clustered together with European TYMV group, whereas Sp-09 and Sp-13 grouped with the Japanese TYMV group, and all differed from group TYMV-2. The sequences of the three different genomic regions examined clustered into the same groups. The results suggested that Spanish isolates grouped according to the original hosts from which they were isolated. The inoculation of the Spanish TYMV isolates to four crucifer plants species (turnip, broccoli, Brunswick cabbage and radish) revealed that all the isolates infected turnip with typical symptoms, although differences were observed in other hosts.Alfaro Fernández, AO.; Serrano, A.; Tornos, T.; Cebrian Mico, MC.; Córdoba-Sellés, MDC.; Jordá, C.; Font San Ambrosio, MI. (2016). Turnip yellow mosaic virus in Chinese cabbage in Spain: Commercial seed transmission and molecular characterization. EUROPEAN JOURNAL OF PLANT PATHOLOGY. 146(2):433-442. doi:10.1007/s10658-016-0929-3S4334421462Assis Filho, M., & Sherwood, J. L. (2000). Evaluation of seed transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana. Phytopathology, 90, 1233–1238.Benetti, M. P., & Kaswalder, F. (1983). Trasmisione per seme del virus del mosaico giallo rapa. Annali dell Istituto Sperimentale per la Patologia Vegetale, 8, 67–70.Blok, J., Mackenzie, A., Guy, P., & Gibbs, A. (1987). Nucleotide sequence comparisons of Turnip yellow mosaic virus isolates from Australia and Europe. Archives of Virology, 97, 283–295.Brunt, A., Crabtree, K., Dallwitz, M., Gibbs, A., Watson, L., & Zurcher, E.J. (1996). Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. URL http://biology.anu.edu.au/Groups/MES/vide/ .Campbell, R. N., Wipf-Scheibel, C., & Lecoq, H. (1996). Vector-assissted seed transmission of melon necrotic spot virus in melon. Phytopathology, 86, 1294–1298.Dreher, T. W., & Bransom, K. L. (1992). Genomic RNA sequence of Turnip yellow mosaic virus isolate TYMC, a cDNA-based clone with verified infectivity. Plant Molecular Biology, 18, 403–406.Fakhro, A., Von Bargen, S., Bandte, M., Büttner, C., Franken, P., & Schwarz, D. (2011). Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 129, 579–590.Gibbs, A. J., & Gower, J. C. (1960). The use of a multiple-transfer method in plant virus transmission studies: some statistical points arising in the analysis of results. Annals of Applied Biology, 48, 75–83.Hayden, C. M., Mackenzie, A. M., & Gibbs, A. J. (1998a). Virion protein sequence variation among Australian isolates of turnip yellow mosaic tymovirus. Archives of Virology, 143, 191–201.Hayden, C. M., Mackenzie, A. M., Skotnicki, M. L., & Gibbs, A. (1998b). Turnip yellow mosaic virus isolates with experimentally produced recombinant virion proteins. Journal of General Virology, 79, 395–403.Hein, A. (1984). Transmission of Turnip yellow mosaic virus through seed of Camelina sativa gold of pleasure. Journal of Plant Diseases and Protection, 91, 549–551.Herrera-Vásquez, J. A., Córdoba-Sellés, M. C., Cebrián, M. C., Alfaro-Fernández, A., & Jordá, C. (2009). Seed transmission of Melon necrotic spot virus and efficacy of seed-disinfection treatments. Plant Pathology, 58, 436–452.Hull, R. (2002). Matthews’ plant virology (4a ed.1001 pp). San Diego: Academic Press.Johansen, E., Edwards, M. C., & Hampton, R. O. (1994). Seed transmission of viruses: current perspectives. Annual Review of Phytopathology, 32, 363–386.Kirino, N., Inoue, K., Tanina, K., Yamazaki, Y., & Ohki, S. T. (2008). Turnip yellow mosaic virus isolated from Chinese cabbage in Japan. Journal of General Plant Pathology, 74, 331–334.Markham, R., & Smith, K. S. (1949). Studies on the virus of turnip yellow mosaic. Parasitology, 39, 330–342.Mathews, R. E. F. (1980). Turnip yellow mosaic virus, CMI/AAB Descriptions of plant virus No. 230 (No. 2 revised). Kew: Commonwealth Mycology Institute/Association of Applied Biologists.Mitchell, E. J., & Bond, J. M. (2005). Variation in the coat protein sequence of British isolates of Turnip yellow mosaic virus and comparison with previously published isolates. Archives of Virology, 150, 2347–2355.Pagán, I., Fraile, A., Fernández-Fueyo, E., Montes, N., Alonso-Blanco, C., & García-Arenal, F. (2010). Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philosophical Transations of the Royal Society Biological Sciences, 365, 1983–1995.Paul, H. L., Gibbs, A., & Wittman-Liebold, B. (1980). The relationships of certain Tymoviruses assessed from the amino acid composition of their coat proteins. Intervirology, 13, 99–109.Pelikanova, J. (1990). Garlic mustard a spontaneous host of TYMV. Ochrana Rostlin, 26, 17–22.Procházková, Z. (1980). Host range and symptom differences between isolates of Turnip mosaic virus obtained from Sisymbrium loeselii. Biologia Plantarum, 22, 341–347.Rimmer, S. R., Shtattuck, V. I., & Buchwaldt, L. (2007). Compendium of brassica diseases (1ª Edición ed.p. 117). USA: APS press.Rot, M. E., & Jelkman, W. (2001). Characterization and detection of several filamentous viruses of cherry: Adaptation of an alternative cloning method (DOP-PCR), and modification of an RNA extraction protocol. European Journal of Plant Pathology, 107, 411–420.Sabanadzovic, S., Abou-Ghanem, N., Castellano, M. A., Digiaero, M., & Martelli, G. P. (2000). Grapevine fleck virus-like in Vitis. Archives of Virology, 145, 553–565.Špack, J., & Kubelková, D. (2000). Serological variability among European isolates of Radish mosaic virus. Plant Pathology, 49, 295–301.Špack, J., Kubelková, D., & Hnilicka, E. (1993). Seed transmission of Turnip yellow mosaic virus in winter turnip and winter oilseed rapes. Annals of Applied Biology, 123, 33–35.Stobbs, L. W., Cerkauskas, R. F., Lowery, T., & VanDriel, L. (1998). Occurrence of Turnip yellow mosaic virus on oriental cruciferours vegetables in Southern Ontario, Canada. Plant Disease, 82, 351.Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739

    Perceived barriers to the regionalization of adult critical care in the United States: a qualitative preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regionalization of adult critical care services may improve outcomes for critically ill patients. We sought to develop a framework for understanding clinician attitudes toward regionalization and potential barriers to developing a tiered, regionalized system of care in the United States.</p> <p>Methods</p> <p>We performed a qualitative study using semi-structured interviews of critical care stakeholders in the United States, including physicians, nurses and hospital administrators. Stakeholders were identified from a stratified-random sample of United States general medical and surgical hospitals. Key barriers and potential solutions were identified by performing content analysis of the interview transcriptions.</p> <p>Results</p> <p>We interviewed 30 stakeholders from 24 different hospitals, representing a broad range of hospital locations and sizes. Key barriers to regionalization included personal and economic strain on families, loss of autonomy on the part of referring physicians and hospitals, loss of revenue on the part of referring physicians and hospitals, the potential to worsen outcomes at small hospitals by limiting services, and the potential to overwhelm large hospitals. Improving communication between destination and source hospitals, provider education, instituting voluntary objective criteria to become a designated referral center, and mechanisms to feed back patients and revenue to source hospitals were identified as potential solutions to some of these barriers.</p> <p>Conclusion</p> <p>Regionalization efforts will be met with significant conceptual and structural barriers. These data provide a foundation for future research and can be used to inform policy decisions regarding the design and implementation of a regionalized system of critical care.</p

    Estrogen Receptor Beta rs1271572 Polymorphism and Invasive Ovarian Carcinoma Risk: Pooled Analysis within the Ovarian Cancer Association Consortium

    Get PDF
    The association of ovarian carcinoma risk with the polymorphism rs1271572 in the estrogen receptor beta (ESR2) gene was examined in 4946 women with primary invasive ovarian carcinoma and 6582 controls in a pooled analysis of ten case-control studies within the Ovarian Cancer Association Consortium (OCAC). All participants were non-Hispanic white women. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression adjusted for site and age. Women with the TT genotype were at increased risk of ovarian carcinoma compared to carriers of the G allele (OR = 1.10; 95%; CI: 1.01-1.21; p = 0.04); the OR was 1.09 (CI: 0.99-1.20; p = 0.07) after excluding data from the center (Hawaii) that nominated this SNP for OCAC genotyping A stronger association of rs1271572 TT versus GT/GG with risk was observed among women aged <= 50 years versus older women (OR = 1.35; CI: 1.12-1.62; p = 0.002; p for interaction = 0.02) that remained statistically significant after excluding Hawaii data (OR = 1.34; CI: 1.11-1.61; p = 0.009). No heterogeneity of the association was observed by study, menopausal status, gravidity, parity, use of contraceptive or menopausal hormones, tumor histological type, or stage at diagnosis. This pooled analysis suggests that rs1271572 might influence the risk of ovarian cancer, in particular among younger women

    A Method for the Simultaneous Estimation of Selection Intensities in Overlapping Genes

    Get PDF
    Inferring the intensity of positive selection in protein-coding genes is important since it is used to shed light on the process of adaptation. Recently, it has been reported that overlapping genes, which are ubiquitous in all domains of life, seem to exhibit inordinate degrees of positive selection. Here, we present a new method for the simultaneous estimation of selection intensities in overlapping genes. We show that the appearance of positive selection is caused by assuming that selection operates independently on each gene in an overlapping pair, thereby ignoring the unique evolutionary constraints on overlapping coding regions. Our method uses an exact evolutionary model, thereby voiding the need for approximation or intensive computation. We test the method by simulating the evolution of overlapping genes of different types as well as under diverse evolutionary scenarios. Our results indicate that the independent estimation approach leads to the false appearance of positive selection even though the gene is in reality subject to negative selection. Finally, we use our method to estimate selection in two influenza A genes for which positive selection was previously inferred. We find no evidence for positive selection in both cases

    Early detection and counselling intervention of asthma symptoms in preschool children: study design of a cluster randomised controlled trial

    Get PDF
    Background. Prevention of childhood asthma is an important public health objective. This study evaluates the effectiveness of early detection of preschool children with asthma symptoms, followed by a counselling intervention at preventive child health centres. Early detection and counselling is expected to reduce the prevalence of asthma symptoms and improve health-related quality of life at age 6 years. Methods/design. This cluster randomised controlled trial was embedded within the Rotterdam population-based prospective cohort study Generation R in which 7893 children (born between April 2002 and January 2006) participated in the postnatal phase. Sixteen child health centres are involved, randomised into 8 intervention and 8 control centres. Since June 2005, an early detection tool has been applied at age 14, 24, 36 and 45 months at the intervention centres. Children who met the intervention criteria received counselling intervention (personal advice to parents to prevent smoke exposure of the child, and/or referral to the general practitioner or asthma nurse). The primary outcome was asthma diagnosis at age 6 years. Secondary outcomes included frequency and severity of asthma symptoms, health-related quality of life, fractional exhaled nitric oxide and airway resistance at age 6 years. Analysis was according to the intention-to-treat principle. Data collection will be completed end 2011. Discussion. This study among preschool children provides insight into the effectiveness of early detection of asthma symptoms followed by a counselling intervention at preventive child health centres. Trial registration. Current Controlled Trials ISRCTN15790308
    corecore