236 research outputs found

    Distribution of an Exotic Pest, \u3ci\u3eAgromyza Frontella\u3c/i\u3e (Diptera: Agromyzidae), in Manitoba, Canada.

    Get PDF
    Agromyza frontella is an exotic alfalfa pest from Europe that was first detected in North America in 1968 and has since spread westward into Ontario and the north central United States. Informal surveys had detected A. frontella in Manitoba, but its distribution throughout this province was unknown. In 1998 we collected alfalfa stems to detect plant damage and sweep samples to detect adult A. frontella and the parasitoid Dacnusa dryas throughout the alfalfa growing region of Manitoba. In south central Manitoba, 100% of stems were damaged by A. frontella, and\u3e 100 adults/10 sweeps were recorded at several sites. In west central Manitoba, no plants were damaged and \u3c 10 adults/10 sweeps were observed. We believe this region to be near the western edge of A. frontella distribution. The most important introduced parasitoid of A. frontella, D. dryas, was not detected which suggests that D. dryas has not invaded Manitoba

    Distribution of an Exotic Pest, \u3ci\u3eAgromyza Frontella\u3c/i\u3e (Diptera: Agromyzidae), in Manitoba, Canada.

    Get PDF
    Agromyza frontella is an exotic alfalfa pest from Europe that was first detected in North America in 1968 and has since spread westward into Ontario and the north central United States. Informal surveys had detected A. frontella in Manitoba, but its distribution throughout this province was unknown. In 1998 we collected alfalfa stems to detect plant damage and sweep samples to detect adult A. frontella and the parasitoid Dacnusa dryas throughout the alfalfa growing region of Manitoba. In south central Manitoba, 100% of stems were damaged by A. frontella, and\u3e 100 adults/10 sweeps were recorded at several sites. In west central Manitoba, no plants were damaged and \u3c 10 adults/10 sweeps were observed. We believe this region to be near the western edge of A. frontella distribution. The most important introduced parasitoid of A. frontella, D. dryas, was not detected which suggests that D. dryas has not invaded Manitoba

    Distribution of \u3cem\u3eCotesia rubecula\u3c/em\u3e (Hymenoptera: Braconidae) and Its Displacement of \u3cem\u3eCotesia glomerata\u3c/em\u3e in Eastern North America

    Get PDF
    A survey was conducted from May to Oct of 2011 of the parasitoid community of the imported cabbageworm, Pieris rapae (Lepidoptera: Pieridae), in cole crops in part of the eastern United States and southeastern Canada. The findings of our survey indicate that Cotesia rubecula (Hymenoptera: Braconidae) now occurs as far west as North Dakota and has become the dominant parasitoid of P. rapae in the northeastern and north central United States and adjacent parts of southeastern Canada, where it has displaced the previously common parasitoid Cotesia glomerata (Hymenoptera: Braconidae). Cotesia glomerata remains the dominant parasitoid in the mid-Atlantic states, from Virginia to North Carolina and westward to southern Illinois, below latitude N 38° 48′. This pattern suggests that the released populations of C. rubecula presently have a lower latitudinal limit south of which they are not adapted

    Long-term outcome of patients with newly diagnosed chronic myeloid leukemia: a randomized comparison of stem cell transplantation with drug treatment.

    Get PDF
    Tyrosine kinase inhibitors represent today's treatment of choice in chronic myeloid leukemia (CML). Allogeneic hematopoietic stem cell transplantation (HSCT) is regarded as salvage therapy. This prospective randomized CML-study IIIA recruited 669 patients with newly diagnosed CML between July 1997 and January 2004 from 143 centers. Of these, 427 patients were considered eligible for HSCT and were randomized by availability of a matched family donor between primary HSCT (group A; N=166 patients) and best available drug treatment (group B; N=261). Primary end point was long-term survival. Survival probabilities were not different between groups A and B (10-year survival: 0.76 (95% confidence interval (CI): 0.69-0.82) vs 0.69 (95% CI: 0.61-0.76)), but influenced by disease and transplant risk. Patients with a low transplant risk showed superior survival compared with patients with high- (P<0.001) and non-high-risk disease (P=0.047) in group B; after entering blast crisis, survival was not different with or without HSCT. Significantly more patients in group A were in molecular remission (56% vs 39%; P=0.005) and free of drug treatment (56% vs 6%; P<0.001). Differences in symptoms and Karnofsky score were not significant. In the era of tyrosine kinase inhibitors, HSCT remains a valid option when both disease and transplant risk are considered

    Drone aggregation behavior in the social wasp Vespula germanica (Hymenoptera: Vespidae): Effect of kinship and density

    Get PDF
    Inbreeding can have negative consequences on population viability because of the reduced fitness of the progeny. In general, most species have developed mechanisms to minimize inbreeding such as dispersal and kin avoidance behavior. In the eusocial Hymenoptera, related individuals typically share a common nest and have relatively short mating periods, this could lead to inbreeding, and because of their single?locus complementary sex determination system, it may generate diploid males that could result in infertile triploid progeny representing a cost for the colony. Vespula germanica, is an eusocial wasp that has invaded many parts of the world, despite likely facing a reduced genetic pool during the arrival phases. We ask whether male wasp display specific aggregation behavior that favors genetic diversity, key to reduce inbreeding. Through a set of laboratory experiments, we investigated the effects of drone nestmateship and density on the aggregation behavior of V. germanica drones. We show that drones avoid aggregating with their nestmates at all densities while non-nestmates are avoided only at high densities. This suggests that lek genetic diversity and density could be regulated through drone behavior and in the long run minimize inbreeding favoring invasion success.Fil: Masciocchi, Maité. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Angeletti, Bárbara. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Corley, Juan Carlos. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Martinez Von Ellrichshausen, Andres Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentin

    Bt Crop Effects on Functional Guilds of Non-Target Arthropods: A Meta-Analysis

    Get PDF
    Background: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. Methodology/Principal Findings: We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Moving Your Sons to Safety: Galls Containing Male Fig Wasps Expand into the Centre of Figs, Away From Enemies

    Get PDF
    Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit
    corecore