517 research outputs found
Cardiopulmonary Response to Videogaming: Slaying Monsters Using Motion Sensor Versus Joystick Devices
Objective: Replacing physical activity with videogaming has been implicated in causing obesity. Studies have shown that using motion-sensing controllers with activity-promoting videogames expends energy comparable to aerobic exercise; however, effects of motion-sensing controllers have not been examined with traditional (non–exercise-promoting) videogames.
Materials and Methods: We measured indirect calorimetry and heart rate in 14 subjects during rest and traditional videogaming using motion sensor and joystick controllers.
Results: Energy expenditure was higher while subjects were playing with the motion sensor (1.30±0.32 kcal/kg/hour) than with the joystick (1.07±0.26 kcal/kg/hour; P<0.01) or resting (0.91±0.24 kcal/kg/hour; P<0.01). Oxygen consumption during videogaming averaged 15.7 percent of predicted maximum for the motion sensor and 11.8 percent of maximum for the joystick. Minute ventilation was higher playing with the motion sensor (10.7±3.5 L/minute) than with the joystick (8.6±1.8 L/minute; P<0.02) or resting (6.7±1.4 L/minute; P<0.001), predominantly because of higher respiratory rates (15.2±4.3 versus 20.3±2.8 versus 20.4±4.2 beats/minute for resting, the joystick, and the motion sensor, respectively; P<0.001); tidal volume did not change significantly. Peak heart rate during gaming was 16.4 percent higher than resting (78.0±12.0) for joystick (90.1±15.0; P=0.002) and 17.4 percent higher for the motion sensor (91.6±14.1; P=0.002); mean heart rate did not differ significantly.
Conclusions: Playing with a motion sensor burned significantly more calories than with a joystick, but the energy expended was modest. With both consoles, the increased respiratory rate without increasing tidal volume and the increased peak heart rate without increasing mean heart rate are consistent with psychological stimulation from videogaming, rather than a result of exercise. We conclude that using a motion sensor with traditional videogames does not provide adequate energy expenditure to provide cardiovascular conditioning
Identification of quantitative trait loci for survival in the mutant dynactin p150Glued mouse model of motor neuron disease.
Amyotrophic lateral sclerosis (ALS) is the most common degenerative motor neuron disorder. Although most cases of ALS are sporadic, 5-10% of cases are familial, with mutations associated with over 40 genes. There is variation of ALS symptoms within families carrying the same mutation; the disease may develop in one sibling and not in another despite the presence of the mutation in both. Although the cause of this phenotypic variation is unknown, it is likely related to genetic modifiers of disease expression. The identification of ALS causing genes has led to the development of transgenic mouse models of motor neuron disease. Similar to families with familial ALS, there are background-dependent differences in disease phenotype in transgenic mouse models of ALS suggesting that, as in human ALS, differences in phenotype may be ascribed to genetic modifiers. These genetic modifiers may not cause ALS rather their expression either exacerbates or ameliorates the effect of the mutant ALS causing genes. We have reported that in both the G93A-hSOD1 and G59S-hDCTN1 mouse models, SJL mice demonstrated a more severe phenotype than C57BL6 mice. From reciprocal intercrosses between G93A-hSOD1 transgenic mice on SJL and C57BL6 strains, we identified a major quantitative trait locus (QTL) on mouse chromosome 17 that results in a significant shift in lifespan. In this study we generated reciprocal intercrosses between transgenic G59S-hDCTN1 mice on SJL and C57BL6 strains and identified survival QTLs on mouse chromosomes 17 and 18. The chromosome 17 survival QTL on G93A-hSOD1 and G59S-hDCTN1 mice partly overlap, suggesting that the genetic modifiers located in this region may be shared by these two ALS models despite the fact that motor neuron degeneration is caused by mutations in different proteins. The overlapping region contains eighty-seven genes with non-synonymous variations predicted to be deleterious and/or damaging. Two genes in this segment, NOTCH3 and Safb/SAFB1, have been associated with motor neuron disease. The identification of genetic modifiers of motor neuron disease, especially those modifiers that are shared by SOD1 and dynactin-1 transgenic mice, may result in the identification of novel targets for therapies that can alter the course of this devastating illness
Phenotype of Transgenic Mice Carrying a Very Low Copy Number of the Mutant Human G93A Superoxide Dismutase-1 Gene Associated with Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor neuron. While most cases of ALS are sporadic, 10% are familial (FALS) with 20% of FALS caused by a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1). There is variability in sporadic ALS as well as FALS where even within the same family some siblings with the same mutation do not manifest disease. A transgenic (Tg) mouse model of FALS containing 25 copies of the mutant human SOD1 gene demonstrates motor neuron pathology and progressive weakness similar to ALS patients, leading to death at approximately 130 days. The onset of symptoms and survival of these transgenic mice are directly related to the number of copies of the mutant gene. We report the phenotype of a very low expressing (VLE) G93A SOD1 Tg carrying only 4 copies of the mutant G93ASOD1 gene. While weakness can start at 9 months, only 74% of mice 18 months or older demonstrate disease. The VLE mice show decreased motor neurons compared to wild-type mice as well as increased cytoplasmic translocation of TDP-43. In contrast to the standard G93A SOD1 Tg mouse which always develops motor weakness leading to death, not all VLE animals manifested clinical disease or shortened life span. In fact, approximately 20% of mice older than 24 months had no motor symptoms and only 18% of VLE mice older than 22 months reached end stage. Given the variable penetrance of clinical phenotype, prolonged survival, and protracted loss of motor neurons the VLE mouse provides a new tool that closely mimics human ALS. This tool will allow the study of pathologic events over time as well as the study of genetic and environmental modifiers that may not be causative, but can exacerbate or accelerate motor neuron disease
Pulmonary Function Decline in Amyotrophic Lateral Sclerosis
Background: There has been no comprehensive longitudinal study of pulmonary functions (PFTS) in ALS determining which measure is most sensitive to declines in respiratory muscle strength. Objective: To determine the longitudinal decline of PFTS in ALS and which measure supports Medicare criteria for NIV initiation first. Methods: Serial PFTs (maximum voluntary ventilation (MVV), maximum inspiratory pressure measured by mouth (MIP) or nasal sniff pressure (SNIP), maximum expiratory pressure (MEP), and Forced Vital Capacity (FVC)) were performed over 12 months on 73 ALS subjects to determine which measure showed the sentinel decline in pulmonary function. The rate of decline for each measure was determined as the median slope of the decrease over time. Medicare-based NIV initiation criteria were met if %FVC was ≤ 50% predicted or MIP was ≤ 60 cMH2O. Results: 65 subjects with at least 3 visits were included for analyses. All median slopes were significantly different than zero. MEP and sitting FVC demonstrated the largest rate of decline. Seventy subjects were analyzed for NIV initiation criteria, 69 met MIP criteria first; 11 FVC and MIP criteria simultaneously and none FVC criteria first. Conclusions: MEP demonstrated a steeper decline compared to other measures suggesting expiratory muscle strength declines earliest and faster and the use of airway clearance interventions should be initiated early. When Medicare criteria for NIV initiation are considered, MIP criteria are met earliest. These results suggest that pressure-based measurements are important in assessing the timing of NIV and the use of pulmonary clearance interventions
Reproducibility of in vitro contracture test results in patients tested for malignant hyperthermia susceptibility.
BACKGROUND: The in vitro contracture test (IVCT) is the golden standard to diagnose malignant hyperthermia susceptibility (MHS). A high reproducibility is important for a high validity of a test. METHODS: We have therefore analyzed IVCT in 838 patients, investigated in two laboratories. Each halothane and caffeine test was performed in two muscle strips. The test results were analyzed with respect to reproducibility of abnormal outcomes within pairs of tested muscle strips and size of contractures, thresholds and quality criteria. The patients were tested according to the European Malignant Hyperthermia Group protocol (EMHG). To fulfill quality criteria in the EMHG protocol the twitch height should be 10 mN (1 g) or more. For the caffeine test a minimum contracture of 50 mN (5 g) or more at 32 mmol l-1 caffeine could be used as an alternative quality criterion RESULTS: There was better reproducibility with larger contractures. The correlation between size of contractures and fraction of muscle strips with abnormal contractures was 0.77 or larger. Contractures < 5 mN (0.5 g) were reproducible in less than half of the tests. There was no difference in reproducibility or size of contractures between tests fulfillling all quality criteria and those not fulfillling these criteria. CONCLUSIONS: IVCT responses close to cut off limits, i.e. <5 mN (0.5 g) in the EMHG protocol, are less reproducible and must scientifically be considered as less reliable. The clinical cut off limits must remain unchanged for reasons of clinical safety. The outcome of quality measurements does not influence the test results
Different Human Copper-Zinc Superoxide Dismutase Mutants, SOD1G93A and SOD1H46R, Exert Distinct Harmful Effects on Gross Phenotype in Mice
Amyotrophic lateral sclerosis (ALS) is a heterogeneous group of fatal neurodegenerative diseases characterized by a selective loss of motor neurons in the brain and spinal cord. Creation of transgenic mice expressing mutant Cu/Zn superoxide dismutase (SOD1), as ALS models, has made an enormous impact on progress of the ALS studies. Recently, it has been recognized that genetic background and gender affect many physiological and pathological phenotypes. However, no systematic studies focusing on such effects using ALS models other than SOD1G93A mice have been conducted. To clarify the effects of genetic background and gender on gross phenotypes among different ALS models, we here conducted a comparative analysis of growth curves and lifespans using congenic lines of SOD1G93A and SOD1H46R mice on two different genetic backgrounds; C57BL/6N (B6) and FVB/N (FVB). Copy number of the transgene and their expression between SOD1G93A and SOD1H46R lines were comparable. B6 congenic mutant SOD1 transgenic lines irrespective of their mutation and gender differences lived longer than corresponding FVB lines. Notably, the G93A mutation caused severer disease phenotypes than did the H46R mutation, where SOD1G93A mice, particularly on a FVB background, showed more extensive body weight loss and earlier death. Gender effect on survival also solely emerged in FVB congenic SOD1G93A mice. Conversely, consistent with our previous study using B6 lines, lack of Als2, a murine homolog for the recessive juvenile ALS causative gene, in FVB congenic SOD1H46R, but not SOD1G93A, mice resulted in an earlier death, implying a genetic background-independent but mutation-dependent phenotypic modification. These results indicate that SOD1G93A- and SOD1H46R-mediated toxicity and their associated pathogenic pathways are not identical. Further, distinctive injurious effects resulted from different SOD1 mutations, which are associated with genetic background and/or gender, suggests the presence of several genetic modifiers of disease expression in the mouse genome
ALSUntangled #75: Portable neuromodulation stimulator therapy
Spurred by patient interest, ALSUntangled herein examines the potential of the Portable Neuromodulation Stimulator (PoNS™) in treating amyotrophic lateral sclerosis (ALS). The PoNS™ device, FDA-approved for the treatment of gait deficits in adult patients with multiple sclerosis, utilizes translingual neurostimulation to stimulate trigeminal and facial nerves via the tongue, aiming to induce neuroplastic changes. While there are early, promising data for PoNS treatment to improve gait and balance in multiple sclerosis, stroke, and traumatic brain injury, no pre-clinical or clinical studies have been performed in ALS. Although reasonably safe, high costs and prescription requirements will limit PoNS accessibility. At this time, due to the lack of ALS-relevant data, we cannot endorse the use of PoNS as an ALS treatment
Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive loss of motoneurons, motor weakness and death within 1–5 years after disease onset. Therapeutic options remain limited despite a substantial number of approaches that have been tested clinically. In particular, various neurotrophic factors have been investigated. Failure in these trials has been largely ascribed to problems of insufficient dosing or inability to cross the blood–brain barrier (BBB). We have recently uncovered the neurotrophic properties of the haematopoietic protein granulocyte-colony stimulating factor (G-CSF). The protein is clinically well tolerated and crosses the intact BBB. This study examined the potential role of G-CSF in motoneuron diseases. We investigated the expression of the G-CSF receptor in motoneurons and studied effects of G-CSF in a motoneuron cell line and in the SOD1(G93A) transgenic mouse model. The neurotrophic growth factor was applied both by continuous subcutaneous delivery and CNS-targeted transgenic overexpression. This study shows that given at the stage of the disease where muscle denervation is already evident, G-CSF leads to significant improvement in motor performance, delays the onset of severe motor impairment and prolongs overall survival of SOD1(G93A)tg mice. The G-CSF receptor is expressed by motoneurons and G-CSF protects cultured motoneuronal cells from apoptosis. In ALS mice, G-CSF increased survival of motoneurons and decreased muscular denervation atrophy. We conclude that G-CSF is a novel neurotrophic factor for motoneurons that is an attractive and feasible drug candidate for the treatment of ALS
Recommended from our members
Guidance for clinical management of pathogenic variant carriers at elevated genetic risk for ALS/FTD
There is a growing understanding of the presymptomatic stages of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and nascent efforts aiming to prevent these devastating neurodegenerative diseases have emerged. This progress is attributable, in no small part, to the altruism of people living with pathogenic variants at elevated genetic risk for ALS/FTD via their willingness to participate in natural history studies and disease prevention trials. Increasingly, this community has also highlighted the urgent need to develop paradigms for providing appropriate clinical care for those at elevated risk for ALS and FTD. This manuscript summarises recommendations emanating from a multi-stakeholder Workshop (Malvern, Pennsylvania, 2023) that aimed to develop guidance for at-risk carriers and their treating physicians. Clinical care recommendations span genetic testing (including counselling and sociolegal implications); monitoring for the emergence of early motor, cognitive and behavioural signs of disease; and the use of Food and Drug Administration-approved small molecule drugs and gene-targeting therapies. Lifestyle recommendations focus on exercise, smoking, statin use, supplement use, caffeine intake and head trauma, as well as occupational and environmental exposures. While the evidence base to inform clinical and lifestyle recommendations is limited, this guidance document aims to appraise carriers and clinicians of the issues and best available evidence, and also to define the research agenda that could yield more evidence-informed guidelines
- …
