87 research outputs found

    Models of Arctic-alpine refugia highlight importance of climate and local topography

    Get PDF
    Projected climatic warming calls for increased attention to the identification of suitable refugia for the preservation of biota and ecosystems in changing high-latitude environments. One such way is the development of models for drivers of refugia. Here, we investigate the distribution and species richness of Arctic-alpine vascular plant species' refugia. The study is carried out in an environmentally variable area in N Europe, encompassing the northern boreal to the Arctic-alpine zone. We defined refugia as isolated 1 km x 1 km grid cells with multiple Arctic-alpine plant species occurrences outside their main distribution area and assessed the main environmental factors underlying their distribution and richness using cross-validated boosted regression tree modelling. In the modelling, we examined the effects of climatic, topographic, and geologic factors, and the connectivity of sites with refugia incrementally, i.e. first modelling climatic impact alone, then with separate additions of topographic, geologic and connectivity variables, concluding with a model including all predictor variables. The inclusion of slope and connectivity significantly improved model performance. Although climate has a central role in controlling the occurrence of refugia, topography provides important clues for recognizing heterogeneous locations that harbour refugia with suitable local thermal and moisture conditions. Results suggest considering refugia as, on the one hand, isolated pockets of suitable habitat, but on the other hand as potentially interconnected habitat networks. In general, our study demonstrates that the spatial patterns of refugia can be successfully modelled, but emphasizes a need for high-quality data sampled at resolutions reflecting significant environmental gradients.Peer reviewe

    Quantifying the climate exposure of priority habitat constrained to specific environmental conditions : Boreal aapa mires

    Get PDF
    Climate velocity is an increasingly used metric to detect habitats, locations and regions which are exposed to high rates of climate change and displacement. In general, velocities are measured based on the assumption that future climatically similar locations can occur anywhere in the study landscape. However, this assumption can provide a biased basis for habitats which are constrained to specific environmental conditions. For such habitats, a set of selected suitable locations may provide ecologically more realistic velocity measures. Here, we focus on one environmentally constrained habitat, aapa mires, which are peat-accumulating EU Habitats Directive pri-ority habitats, whose ecological conditions and biodiversity values may be jeopardised by climate change. We assess the climate exposure of aapa mires in Finland by developing velocity metrics separately for the whole >= 10 ha aapa mire complexes ('aapa mires') and their wettest flark-dominated parts ('flark fens'). Velocity metrics were developed for six bioclimatic variables (growing degree days (GDD5), mean January and July temperatures, annual precipitation, and May and July water balance, based on climate data for 1981-2010 and for 2040-2069 as derived from global climate models for two Representative Concentration Pathways (RCP4.5 and RCP8.5). For the six variables, velocities were calculated based on the distance between climatically similar present-day and nearest future mire, divided by the number of years between the two periods, and by excluding the unsuitable matrix. Both aapa mires and flark fens showed high exposure (>5 km/year) to changes in January temperature, and often also considerably high velocities for GDD5 and July temperatures. The flark fens showed significantly higher climate velocities than the aapa mires and had a smaller amount of corresponding habitat in their sur-roundings. Thus, many of the studied mires, particularly the flark fens, are likely to face increased risks of exposure due to changes in winter and summer temperatures. Moreover, considerable changes in precipitation -related conditions may occur at the southern margin of the aapa mire zone. Our results show that specifically tailored climate velocity metrics can provide a useful quantitative tool to inform conservation and management decisions to support the ecosystem sustainability of this EU Habitats Directive biotope and targeting restoration towards the most vulnerable aapa mires.Peer reviewe

    Incorporating landscape heterogeneity into multi-objective spatial planning improves biodiversity conservation of semi-natural grasslands

    Get PDF
    Recent actions to mitigate biodiversity loss in agricultural environments appear insufficient despite the considerable efforts channeled via the European Union’s Common Agricultural Policy. One likely reason for this failure is the limited attention paid to the regional and landscape level ecological characteristics in farmland conservation planning. We demonstrate how to obtain conservation prioritization solutions that would address simultaneously three goals, including two landscape level targets: minimizing local habitat quality loss, maximizing habitat connectivity, and incorporating landscape heterogeneity. As these goals may be contradictory, we investigate the potential trade-offs between them. We used the Zonation prioritization tool to examine how our three goals could be implemented in the agricultural landscapes of southwest Finland. We used measures of (i) biodiversity value of grasslands, (ii) connectivity between grasslands, and (iii) landscape heterogeneity which comprised of (land cover type based) compositional heterogeneity and (field margin based) configurational heterogeneity. Integration of landscape heterogeneity measures and habitat connectivity resulted in some tradeoffs with local habitat quality, the most prominent observation being that landscape heterogeneity co-varied with grassland connectivity. Among the two landscape heterogeneity parameters, inclusion of compositional heterogeneity resulted in more clustered prioritization solutions than configurational heterogeneity, which had a spatially more balanced impact. Concordance among landscape scale factors implies high potential for reconstruction of a functioning network of semi-natural grasslands in areas under intensive agricultural use. Broader scale multi-objective planning approaches can thus importantly support targeting biodiversity conservation planning and mediating the implementation of Common Agricultural Policy objectives.peerReviewe

    Predicting valuable forest habitats using an indicator species for biodiversity

    Get PDF
    Intensive management of boreal forests impairs forest biodiversity and species of old-growth forest. Effective measures to support biodiversity require detection of locations valuable for conservation. We applied species distribution models (SDMs) to a species of mature forest, the northern goshawk (Accipiter gentilis, goshawk), that is often associated with hotspots of forest biodiversity. We located optimal sites for the goshawk on a landscape scale, assessed their state under intensified logging operations and identified characteristics of goshawks' nesting sites in boreal forests. Optimal sites for the goshawk covered only 3.4% of the boreal landscape and were mostly located outside protected areas, which highlights the importance of conservation actions in privately-owned forests. Furthermore, optimal sites for the goshawk and associated biodiversity were under threat. Half of them were logged to some extent and 10% were already lost or notably deteriorated due to logging shortly after 2015 for which our models were calibrated. Habitat suitability for the goshawk increased with increasing volume of Norway spruce (Picea abies) peaking at 220 m(3) ha(-1), and with small quantities of birches (Betula spp.) and other broad-leaved trees. Threats to biodiversity of mature spruce forests are likely to accelerate in the future with increasing logging pressures and shorter rotation periods. Logging should be directed less to forests with high biodiversity. Continuous supply of mature spruce forests in the landscape should be secured with a denser network of protected areas and measures that aid in sparing large entities of mature forest on privately-owned land.peerReviewe

    Can Topographic Variation in Climate Buffer against Climate Change-Induced Population Declines in Northern Forest Birds?

    Get PDF
    Increased attention is being paid to the ecological drivers and conservation measures which could mitigate climate change-induced pressures for species survival, potentially helping populations to remain in their present-day locations longer. One important buffering mechanism against climate change may be provided by the heterogeneity in topography and consequent local climate conditions. However, the buffering capacity of this topoclimate has so far been insufficiently studied based on empirical survey data across multiple sites and species. Here, we studied whether the fine-grained air temperature variation of protected areas (PAs) affects the population changes of declining northern forest bird species. Importantly to our study, in PAs harmful land use, such as logging, is not allowed, enabling the detection of the effects of temperature buffering, even at relatively moderate levels of topographic variation. Our survey data from 129 PAs located in the boreal zone in Finland show that the density of northern forest species was higher in topographically heterogeneous PAs than in topographically more homogeneous PAs. Moreover, local temperature variation had a significant effect on the density change of northern forest birds from 1981–1999 to 2000–2017, indicating that change in bird density was generally smaller in PAs with higher topographic variation. Thus, we found a clear buffering effect stemming from the local temperature variation of PAs in the population trends of northern forest birds

    Can Topographic Variation in Climate Buffer against Climate Change-Induced Population Declines in Northern Forest Birds?

    Get PDF
    Increased attention is being paid to the ecological drivers and conservation measures which could mitigate climate change-induced pressures for species survival, potentially helping populations to remain in their present-day locations longer. One important buffering mechanism against climate change may be provided by the heterogeneity in topography and consequent local climate conditions. However, the buffering capacity of this topoclimate has so far been insufficiently studied based on empirical survey data across multiple sites and species. Here, we studied whether the fine-grained air temperature variation of protected areas (PAs) affects the population changes of declining northern forest bird species. Importantly to our study, in PAs harmful land use, such as logging, is not allowed, enabling the detection of the effects of temperature buffering, even at relatively moderate levels of topographic variation. Our survey data from 129 PAs located in the boreal zone in Finland show that the density of northern forest species was higher in topographically heterogeneous PAs than in topographically more homogeneous PAs. Moreover, local temperature variation had a significant effect on the density change of northern forest birds from 1981–1999 to 2000–2017, indicating that change in bird density was generally smaller in PAs with higher topographic variation. Thus, we found a clear buffering effect stemming from the local temperature variation of PAs in the population trends of northern forest birds

    Developing fine-grained nationwide predictions of valuable forests using biodiversity indicator bird species

    Get PDF
    Publisher Copyright: © 2021 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America.The use of indicator species in forest conservation and management planning can facilitate enhanced preservation of biodiversity from the negative effects of forestry and other uses of land. However, this requires detailed and spatially comprehensive knowledge of the habitat preferences and distributions of selected focal indicator species. Unfortunately, due to limited resources for field surveys, only a small proportion of the occurrences of focal species is usually known. This shortcoming can be circumvented by using modelling techniques to predict the spatial distribution of suitable sites for the target species. Airborne laser scanning (ALS) and other remote sensing (RS) techniques have the potential to provide useful environmental data covering systematically large areas for these purposes. Here, we focused on six bird of prey and woodpecker species known to be good indicators of boreal forest biodiversity values. We used known nest sites of the six indicator species based on nestling ringing records. Thus, the most suitable nesting sites of these species provide important information for biodiversity-friendly forest management and conservation planning. We developed fine-grained, i.e., 96 x 96 m grid cell resolution, predictive maps across the whole of Finland of the suitable nesting habitats based on ALS and other RS data and spatial information on the distribution of important forest stands for the six studied biodiversity indicator bird species based on nesting habitat suitability modelling, i.e., the MaxEnt model. Habitat preferences of the study species, as determined by MaxEnt, were in line with the previous knowledge of species-habitat relations. The proportion of suitable habitats of these species in protected areas was considerable, but our analysis also revealed many potentially high-quality forest stands outside protected areas. However, many of these sites are increasingly threatened by logging due to increased pressures for using forests for bioeconomy and forest industry based on National Forest Strategy. Predicting habitat suitability based on information on the nest sites of indicator species provides a new tool for systematic conservation planning over large areas in boreal forests in Europe, and corresponding approach would also be feasible and recommendable elsewhere where similar data are available.The use of indicator species in forest conservation and management planning can facilitate enhanced preservation of biodiversity from the negative effects of forestry and other uses of land. However, this requires detailed and spatially comprehensive knowledge of the habitat preferences and distributions of selected focal indicator species. Unfortunately, due to limited resources for field surveys, only a small proportion of the occurrences of focal species is usually known. This shortcoming can be circumvented by using modeling techniques to predict the spatial distribution of suitable sites for the target species. Airborne laser scanning (ALS) and other remote sensing (RS) techniques have the potential to provide useful environmental data covering systematically large areas for these purposes. Here, we focused on six bird of prey and woodpecker species known to be good indicators of boreal forest biodiversity values. We used known nest sites of the six indicator species based on nestling ringing records. Thus, the most suitable nesting sites of these species provide important information for biodiversity-friendly forest management and conservation planning. We developed fine-grained, that is, 96 x 96 m grid cell resolution, predictive maps across the whole of Finland of the suitable nesting habitats based on ALS and other RS data and spatial information on the distribution of important forest stands for the six studied biodiversity indicator bird species based on nesting-habitat suitability modeling, that is, the MaxEnt model. Habitat preferences of the study species, as determined by MaxEnt, were in line with the previous knowledge of species-habitat relations. The proportion of suitable habitats of these species in protected areas (PAs) was considerable, but our analysis also revealed many potentially high-quality forest stands outside PAs. However, many of these sites are increasingly threatened by logging because of increased pressures for using forests for bioeconomy and forest industry based on National Forest Strategy. Predicting habitat suitability based on information on the nest sites of indicator species provides a new tool for systematic conservation planning over large areas in boreal forests in Europe, and a corresponding approach would also be feasible and recommendable elsewhere where similar data are available.Peer reviewe
    • 

    corecore