1,190 research outputs found

    The Effects of Lightning NO(x) Production during the July 21 EULINOX Storm studied with a 3-D Cloud-scale Chemical Transport Model

    Get PDF
    The July 21,1998 thunderstonn observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics, and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NO(x) production which uses observed flash rates as input. Estimates of lightning NO(x) production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N per yr. Chemical reactions were included in the model to evaluate the impact of lightning NO(x), on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NO(x), maximizing at approximately 5 ppbv per day at 5.5 km. Between 8 and 10.5 km, lightning NO(x) causes decreased net ozone production

    Duration of deafness impacts auditory performance after cochlear implantation: A meta‐analysis

    Get PDF
    Objective: Hearing loss is a highly disabling condition. Cochlear implantation is an established remedy if conventional hearing aids have failed to alleviate the level of disability. Unfortunately, cochlear implant (CI) performance varies dramatically. This study aims to examine the effects of duration of deafness (DoD) prior to cochlear implantation and the postoperative duration of implant experience with resulting hearing performance in postlingually deaf patients. Methods: A systematic literature review and two meta-analyses were conducted using the search terms cochlear implant AND duration deafness. Included studies evaluate the correlation between the DoD and auditory performance after cochlear implantation using monosyllabic and sentence tests. Correlation coefficients were determined using Pearson's correlation and Spearman rho. Results: A total of 36 studies were identified and included data on cochlear implantations following postlingual deafness and postoperative speech testing of hearing outcomes for 1802 patients. The mean age ranged from 44 to 68 years with a DoD of 0.1 to 77 years. Cochlear implant use varied from 3 months to 14 years of age. Speech perception, which was assessed by sentence and monosyllabic word perception, was negatively correlated with DoD. Subgroup analyses revealed worse outcomes for longer DoD and shorter postoperative follow-up. Conclusion: DoD is one of the most important factors to predict speech perception after cochlear implantation in postlingually deaf patients. The meta-analyses revealed a negative correlation between length of auditory deprivation and postoperative sentence and monosyllabic speech perception. Longer DoD seems to lead to worse CI performance, whereas more experience with CI mitigates the effect

    Gastrointestinal Parasites of Two Populations of Arctic Foxes (<em>Vulpes lagopus</em>) from Northeast Greenland

    Get PDF
    Parasitological examination of 275 faecal samples from Arctic foxes (Vulpes lagopus) collected at Zackenberg Valley and Karupelv Valley in north-east Greenland from 2006 to 2008 was conducted using sieving and microscopy. Overall, 125 (45.5%) samples contained parasite eggs of Taenia crassiceps, Taenia serialis, Toxascaris leonina, Eucoleus boehmi, Physalopteridae and Ancylostomatidae, and Strongyloides-like larvae. As long-term ecological studies are conducted at both sampling locations, the present findings constitute a baseline data set for further parasitological monitoring

    Mutations that affect the surface expression of TRPV6 are associated with the upregulation of serine proteases in the placenta of an infant

    Get PDF
    Recently, we reported a case of an infant with neonatal severe under-mineralizing skeletal dysplasia caused by mutations within both alleles of the TRPV6 gene. One mutation results in an in frame stop codon (R(510)stop) that leads to a truncated, nonfunctional TRPV6 channel, and the second in a point mutation (G(660)R) that, surprisingly, does not affect the Ca(2+) permeability of TRPV6. We mimicked the subunit composition of the unaffected heterozygous parent and child by coexpressing the TRPV6 G(660)R and R(510)stop mutants and combinations with wild type TRPV6. We show that both the G(660)R and R(510)stop mutant subunits are expressed and result in decreased calcium uptake, which is the result of the reduced abundancy of functional TRPV6 channels within the plasma membrane. We compared the proteomic profiles of a healthy placenta with that of the diseased infant and detected, exclusively in the latter two proteases, HTRA1 and cathepsin G. Our results implicate that the combination of the two mutant TRPV6 subunits, which are expressed in the placenta of the diseased child, is responsible for the decreased calcium uptake, which could explain the skeletal dysplasia. In addition, placental calcium deficiency also appears to be associated with an increase in the expression of proteases
    • 

    corecore