95 research outputs found

    Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    Get PDF
    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium is more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the best core performance characteristics for each of them. With the exception of the fuel type and enrichment, the reference AFR-100 core design characteristics were kept unchanged, including the general core layout and dimensions, assembly dimensions, materials and power rating. In addition, the mass of {sup 235}U required was kept within a reasonable range from that of the reference AFR-100 design. The core performance characteristics, kinetics parameters and reactivity feedback coefficients were calculated using the ANL suite of fast reactor analysis code systems. Orifice design calculations and the steady-state thermal-hydraulic analyses were performed using the SE2-ANL code. The thermal margins were evaluated by comparing the peak temperatures to the design limits for parameters such as the fuel melting temperature and the fuel-cladding eutectic temperature. The inherent safety features of AFR-100 cores proposed were assessed using the integral reactivity parameters of the quasi-static reactivity balance analysis. The design objectives and requirements, the computation methods used as well as a description of the core concept are provided in Section 2. The three major approaches considered are introduced in Section 3 and the neutronics performances of those approaches are discussed in the same section. The orifice zoning strategies used and the steady-state thermal-hydraulic performance are provided in Section 4. The kinetics and reactivity coefficients, including the inherent safety characteristics, are provided in Section 5, and the Conclusions in Section 6. Other scenarios studied and sensitivity studies are provided in the Appendix section

    Ventricular septal defect in a child with Alport syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alport syndrome (AS) is a rare inherited disorder characterized by an inflammation of the kidneys and damage to the glomerular capillaries, ultimately leading to renal failure at an early age. To date, rare reports of cardiac involvement in AS have been described, due in the majority of cases to the higher risk of heart conduction abnormalities in these patients, at times requiring implantation of a transcutaneous pacemaker. An increased risk of hypertension is likewise commonly featured.</p> <p>Case presentation</p> <p>We report the case of a 17-year-old female affected by a very severe early form of AS. A previously unreported association of the syndrome with congenital heart disease (CHD), (in this case membranous ventricular septal defect), is also reported. A possible pathophysiological mechanism underlying the concomitant manifestation of these two disorders is suggested. Complications implicated in surgical treatment of CHD are described. Clinical and therapeutic management of AS with cardiovascular involvement are discussed, and a short literature review performed.</p> <p>Conclusions</p> <p>This first report of a cardiovascular association highlights the possible involvement of collagen mutations in the two pathologies. Even when drug-resistance appears to be responsible for the failure to control secondary hypertension in AS, clonidine may represent a safe, effective option in the normalization of high blood pressure.</p

    The European Rare Kidney Disease Registry (ERKReg): objectives, design and initial results

    Get PDF
    BACKGROUND: The European Rare Kidney Disease Reference Network (ERKNet) recently established ERKReg, a Web-based registry for all patients with rare kidney diseases. The main objectives of this core registry are to generate epidemiological information, identify current patient cohort for clinical research, explore diagnostic and therapeutic management practices, and monitor treatment performance and patient's outcomes. The registry has a modular design that allows to integrate comprehensive disease-specific registries as extensions to the core database. The diagnosis (Orphacode) and diagnostic information (clinical, imaging, histopathological, biochemical, immunological and genetic) are recorded. Anthropometric, kidney function, and disease-specific management and outcome items informing a set of 61 key performance indicators (KPIs) are obtained annually. Data quality is ensured by automated plausibility checks upon data entry and regular offline database checks prompting queries. Centre KPI statistics and benchmarking are calculated automatically. RESULTS: Within the first 24 months since its launch, 7607 patients were enrolled to the registry at 45 pediatric and 12 specialized adult nephrology units from 21 countries. A kidney disease diagnosis had been established in 97.1% of these patients at time of enrolment. While 199 individual disease entities were reported by Orphacode, 50% of the cohort could be classified with 11, 80% with 43 and 95% with 92 codes. Two kidney diagnoses were assigned in 6.5% of patients; 5.9% suffered from syndromic disease. Whereas glomerulopathies (54.8%) and ciliopathies including autosomal dominant polycystic kidney disease (ADPKD) (31.5%) were the predominant disease groups among adults, the pediatric disease spectrum encompassed congenital anomalies of the kidney and urinary tract (CAKUT) (33.7%), glomerulopathies (30.7%), ciliopathies (14.0%), tubulopathies (9.2%), thrombotic microangiopathies (5.6%), and metabolic nephropathies (4.1%). Genetically confirmed diagnoses were reported in 24% of all pediatric and 12% adult patients, whereas glomerulopathies had been confirmed by kidney biopsy in 80.4% adult versus 38.5% pediatric glomerulopathy cases. CONCLUSIONS: ERKReg is a rapidly growing source of epidemiological information and patient cohorts for clinical research, and an innovative tool to monitor management quality and patient outcomes

    COL4A3/COL4A4 mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome.

    Get PDF
    COL4A3/COL4A4 mutations: From familial hematuria to autosomal-dominant or recessive Alport syndrome. BACKGROUND: Mutations of the type IV collagen COL4A5 gene cause X-linked Alport syndrome (ATS). Mutations of COL4A3 and COL4A4 have been reported both in autosomal-recessive and autosomal-dominant ATS, as well as in benign familial hematuria (BFH). In the latter conditions, however, clinical features are less defined, few mutations have been reported, and other genes and non-genetic factors may be involved. METHODS: We analyzed 36 ATS patients for COL4A3 and COL4A4 mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and direct sequencing. Sporadic patients who had tested negative for COL4A5 mutations were included with typical cases of autosomal recessive ATS to secure a better definition of the phenotype spectrum. RESULTS: We identified seven previously undescribed COL4A3 mutations: in two genetic compounds and three heterozygotes, and one in COL4A4. In agreement with the literature, some of the mutations of compound heterozygotes were associated with microhematuria in healthy heterozygous relatives. The mutations of heterozygous patients are likely dominant, since no change was identified in the second allele even by sequencing, and they are predicted to result in shortened or abnormal chains with a possible dominant-negative effect. In addition, both genes showed rare variants of unclear pathogenicity, and common polymorphisms that are shared in part with other populations. CONCLUSIONS: This study extends the mutation spectrum of COL4A3 and COL4A4 genes, and suggests a possible relationship between production of abnormal COL IV chains and dominant expression of a continuous spectrum of phenotypes, from ATS to BFH

    Genetic drivers of kidney defects in the digeorge syndrome

    Get PDF
    BACKGROUND The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P = 4.5Ă—1014). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-Altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. CONCLUSIONS We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver

    Renal malformations associated with mutations of developmental genes: messages from the clinic

    Get PDF
    Renal tract malformations (RTMs) account for about 40% of children with end-stage renal failure. RTMs can be caused by mutations of genes normally active in the developing kidney and lower renal tract. Moreover, some RTMs occur in the context of multi-organ malformation syndromes. For these reasons, and because genetic testing is becoming more widely available, pediatric nephrologists should work closely with clinical geneticists to make genetic diagnoses in children with RTMs, followed by appropriate family counseling. Here we highlight families with renal cysts and diabetes, renal coloboma and Fraser syndromes, and a child with microdeletion of chromosome 19q who had a rare combination of malformations. Such diagnoses provide families with often long-sought answers to the question “why was our child born with kidney disease”. Precise genetic diagnoses will also help to define cohorts of children with RTMs for long-term clinical outcome studies

    The ANTENATAL multicentre study to predict postnatal renal outcome in fetuses with posterior urethral valves: objectives and design

    Get PDF
    Abstract Background Posterior urethral valves (PUV) account for 17% of paediatric end-stage renal disease. A major issue in the management of PUV is prenatal prediction of postnatal renal function. Fetal ultrasound and fetal urine biochemistry are currently employed for this prediction, but clearly lack precision. We previously developed a fetal urine peptide signature that predicted in utero with high precision postnatal renal function in fetuses with PUV. We describe here the objectives and design of the prospective international multicentre ANTENATAL (multicentre validation of a fetal urine peptidome-based classifier to predict postnatal renal function in posterior urethral valves) study, set up to validate this fetal urine peptide signature. Methods Participants will be PUV pregnancies enrolled from 2017 to 2021 and followed up until 2023 in >30 European centres endorsed and supported by European reference networks for rare urological disorders (ERN eUROGEN) and rare kidney diseases (ERN ERKNet). The endpoint will be renal/patient survival at 2 years postnatally. Assuming α = 0.05, 1–β = 0.8 and a mean prevalence of severe renal outcome in PUV individuals of 0.35, 400 patients need to be enrolled to validate the previously reported sensitivity and specificity of the peptide signature. Results In this largest multicentre study of antenatally detected PUV, we anticipate bringing a novel tool to the clinic. Based on urinary peptides and potentially amended in the future with additional omics traits, this tool will be able to precisely quantify postnatal renal survival in PUV pregnancies. The main limitation of the employed approach is the need for specialized equipment. Conclusions Accurate risk assessment in the prenatal period should strongly improve the management of fetuses with PUV

    CORE DESIGN ACTIVITIES OF THE VERSATILE TEST REACTOR – CONCEPTUAL PHASE

    Get PDF
    The Versatile Test Reactor (VTR) is a new fast spectrum test reactor being developed in the United States under the direction of the US Department of Energy, Office of Nuclear Energy. The VTR mission is to enable accelerated testing of advanced reactor fuels and materials required for advanced reactor technologies. This includes neutron irradiation capabilities which would support alternate coolants including molten salt, lead/lead-bismuth eutectic mixture, gas, and sodium. The VTR aims at addressing most of the needs of the various stakeholders, which is primarily composed of advanced reactor technologists, developers and vendors, as well as a number of others interested parties. Design activities are underway targeting a first criticality date by 2026, with General Electric recently joining the project to contribute to the VTR plant design. Current efforts are focused on all aspects of the VTR design, with the core design being at the center of the initial steps. The VTR is currently proposed as a 300 MWth sodium-cooled fast reactor able to reach peak fast flux levels in excess of 4.0x1015 n/cm2-s (and total flux level of about 6.0x1015 n/cm2-s). In this configuration, it is using ternary metallic fuel with reactor-grade plutonium and 5% low-enriched uranium

    IMPACT OF NUCLEAR DATA LIBRARIES ON PREDICTED FAST REACTOR PERFORMANCE

    No full text
    The nuclear data evaluation process inherently yields a nuclear data set designed to produce accurate results for the neutron energy spectra corresponding to a specific benchmark suite of experiments. When studying reactors with spectral conditions outside of, or not well represented by, the experimental database used to evaluate the nuclear data, care should be given to the relevance of the nuclear data used. In such cases, larger biases or uncertainties may be present than in a reactor with well-represented spectra. The motivation of this work is to understand the magnitude of differences between recent nuclear data libraries to provide estimates for expected variability in criticality and power distribution results for sodiumcooled, steel-reflected, metal-fueled fast reactor designs. This work was specifically performed by creating a 3D OpenMC model of a sodium-cooled, steel-reflected, metal-fueled fast reactor similar to the FASTER design but without a thermal test region. This OpenMC model was used to compare the differences in eigenvalues, reactivity coefficients, and the spatial and energetic effects on flux and power distributions between the ENDF/B-VII.0, ENDF/B-VII.1, ENDF/B-VIII.0, JEFF-3.2, and JEFF-3.3 nuclear data libraries. These investigations have revealed that reactivity differences between the above libraries can vary by nearly 900 pcm and the fine-group fluxes can vary by up to 18% in individual groups. Results also show a strong variation in the flux and power distributions near the fuel/reflector interface due to the high variability in the 56Fe cross sections in the libraries examined. This indicates that core design efforts of a sodium-cooled, steel-reflected, metalfueled reactor will require the application of relatively large nuclear data uncertainties and/or the development of a representative benchmark-quality experiment
    • …
    corecore