33 research outputs found

    Suppression of Autophagy Dysregulates the Antioxidant Response and Causes Premature Senescence of Melanocytes

    Get PDF
    YesAutophagy is the central cellular mechanism for delivering organelles and cytoplasm to lysosomes for degradation and recycling of their molecular components. To determine the contribution of autophagy to melanocyte (MC) biology, we inactivated the essential autophagy gene Atg7 specifically in MCs using the Cre-loxP system. This gene deletion efficiently suppressed a key step in autophagy, lipidation of microtubule-associated protein 1 light chain 3 beta (LC3), in MCs and induced slight hypopigmentation of the epidermis in mice. The melanin content of hair was decreased by 10–15% in mice with autophagy-deficient MC as compared with control animals. When cultured in vitro, MCs from mutant and control mice produced equal amounts of melanin per cell. However, Atg7-deficient MCs entered into premature growth arrest and accumulated reactive oxygen species (ROS) damage, ubiquitinated proteins, and the multi-functional adapter protein SQSTM1/p62. Moreover, nuclear factor erythroid 2–related factor 2 (Nrf2)–dependent expression of NAD(P)H dehydrogenase, quinone 1, and glutathione S-transferase Mu 1 was increased, indicating a contribution of autophagy to redox homeostasis in MCs. In summary, the results of our study suggest that Atg7-dependent autophagy is dispensable for melanogenesis but necessary for achieving the full proliferative capacity of MCs

    Autophagy in the Thymic Epithelium Is Dispensable for the Development of Self-Tolerance in a Novel Mouse Model

    Get PDF
    The thymic epithelium plays critical roles in the positive and negative selection of T cells. Recently, it was proposed that autophagy in thymic epithelial cells is essential for the induction of T cell tolerance to self antigens and thus for the prevention of autoimmune diseases. Here we have tested this hypothesis using mouse models in which autophagy was blocked specifically in epithelial cells expressing keratin 14 (K14), including the precursor of thymic epithelial cells. While the thymic epithelial cells of mice carrying the floxed Atg7 gene (ATG7 f/f) showed a high level of autophagy, as determined by LC3 Western blot analysis and fluorescence detection of the recombinant green fluorescent protein (GFP)-LC3 reporter protein on autophagosomes, autophagy in the thymic epithelium was efficiently suppressed by deletion of the Atg7 gene using the Cre-loxP system (ATG7 f/f K14-Cre). Suppression of autophagy led to the massive accumulation of p62/sequestosome 1 (SQSTM1) in thymic epithelial cells. However, the structure of the thymic epithelium as well as the organization and the size of the thymus were not altered in mutant mice. The ratio of CD4 to CD8-positive T cells, as well as the frequency of activated (CD69+) CD4 T cells in lymphoid organs, did not differ between mice with autophagy-competent and autophagy-deficient thymic epithelium. Inflammatory infiltrating cells, potentially indicative of autoimmune reactions, were present in the liver, lung, and colon of a similar fraction of ATG7 f/f and ATG7 f/f K14-Cre mice. In contrast to previously reported mice, that had received an autophagy-deficient thymus transplant, ATG7 f/f K14-Cre mice did not suffer from autoimmunity-induced weight loss. In summary, the results of this study suggest that autophagy in the thymic epithelium is dispensable for negative selection of autoreactive T cells

    Inactivation of Autophagy in Keratinocytes Reduces Tumor Growth in Mouse Models of Epithelial Skin Cancer

    No full text
    Autophagy is a ubiquitous degradation mechanism, which plays a critical role in cellular homeostasis. To test whether autophagy suppresses or supports the growth of tumors in the epidermis of the skin, we inactivated the essential autophagy gene Atg7 specifically in the epidermal keratinocytes of mice (Atg7∆ep) and subjected such mutant mice and fully autophagy-competent mice to tumorigenesis. The lack of epithelial Atg7 did not prevent tumor formation in response to 7, 12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O tetradecanoylphorbol-13-acetate (TPA) as the promoter of tumor growth. However, the number of tumors per mouse was reduced in mice with epithelial Atg7 deficiency. In the K5-SOS EGFRwa2/wa2 mouse model, epithelial tumors were initiated by Son of sevenless (SOS) in response to wounding. Within 12 weeks after tumor initiation, 60% of the autophagy-competent K5-SOS EGFRwa2/wa2 mice had tumors of 1 cm diameter and had to be sacrificed, whereas none of the Atg7∆ep K5-SOS EGFRwa2/wa2 mice formed tumors of this size. In summary, the deletion of Atg7 reduced the growth of epithelial tumors in these two mouse models of skin cancer. Thus, our data show that the inhibition of autophagy limits the growth of epithelial skin tumors

    Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae)

    No full text
    Abstract Background Vector-pathogen dynamics are controlled by fluctuations of potential vector communities, such as the Culicidae. Assessment of mosquito community diversity and, in particular, identification of environmental parameters shaping these communities is therefore of key importance for the design of adequate surveillance approaches. In this study, we assess effects of climatic parameters and habitat structure on mosquito communities in eastern Austria to deliver these highly relevant baseline data. Methods Female mosquitoes were sampled twice a month from April to October 2014 and 2015 at 35 permanent and 23 non-permanent trapping sites using carbon dioxide-baited traps. Differences in spatial and seasonal abundance patterns of Culicidae taxa were identified using likelihood ratio tests; possible effects of environmental parameters on seasonal and spatial mosquito distribution were analysed using multivariate statistical methods. We assessed community responses to environmental parameters based on 14-day-average values that affect ontogenesis. Results Altogether 29,734 female mosquitoes were collected, and 21 of 42 native as well as two of four non-native mosquito species were reconfirmed in eastern Austria. Statistical analyses revealed significant differences in mosquito abundance between sampling years and provinces. Incidence and abundance patterns were found to be linked to 14-day mean sunshine duration, humidity, water–level maxima and the amount of precipitation. However, land cover classes were found to be the most important factor, effectively assigning both indigenous and non-native mosquito species to various communities, which responded differentially to environmental variables. Conclusions These findings thus underline the significance of non-climatic variables for future mosquito prediction models and the necessity to consider these in mosquito surveillance programmes

    Overexpression of Bcl-2 Protects from Ultraviolet B-Induced Apoptosis but Promotes Hair Follicle Regression and Chemotherapy-Induced Alopecia

    No full text
    Hair follicle (HF) growth and regression is an exquisitely regulated process of cell proliferation followed by massive cell death and is accompanied by cyclical expression of the apoptosis regulatory gene pair, Bcl-2 and Bax. To further investigate the role of Bcl-2 expression in the control of hair growth and keratinocyte apoptosis, we have used transgenic mice that overexpress human Bcl-2 in basal epidermis and in the outer root sheath under the control of the human keratin-14 promoter (K14/Bcl-2). When irradiated with ultraviolet B (UVB) light, K14/Bcl-2 mice developed about 5–10-fold fewer sunburn cells (ie, apoptotic keratinocytes) in the basal layer of the epidermis, compared to wild-type mice, whereas cultures of primary keratinocytes from transgenic mice were completely resistant to UVB-induced histone formation, at doses that readily induced histone release from wild-type cells. K14/Bcl-2 mice show no alteration of neonatal hair follicle morphogenesis or of the onset of the first wave of HF regression (catagen). However, compared to wild-type controls, K14/Bcl-2 mice subsequently displayed a significant acceleration of spontaneous catagen progression. During chemotherapy-induced alopecia, follicular dystrophy was promoted in K14/Bcl-2 mice. Thus, although K14-driven overexpression of Bcl-2 protected murine epidermal keratinocytes from UVB-induced apoptosis, it surprisingly promoted catagen- and chemotherapy-associated keratinocyte apoptosis

    Consequences of Autophagy Deletion on the Age-Related Changes in the Epidermal Lipidome of Mice

    No full text
    Autophagy is a controlled mechanism of intracellular self-digestion with functions in metabolic adaptation to stress, in development, in proteostasis and in maintaining cellular homeostasis in ageing. Deletion of autophagy in epidermal keratinocytes does not prevent the formation of a functional epidermis and the permeability barrier but causes increased susceptibility to damage stress and metabolic alterations and accelerated ageing phenotypes. We here investigated how epidermal autophagy deficiency using Keratin 14 driven Atg7 deletion would affect the lipid composition of the epidermis of young and old mice. Using mass spectrometric lipidomics we found a reduction of age-related accumulation of storage lipids in the epidermis of autophagy-deficient mice, and specific changes in chain length and saturation of fatty acids in several lipid classes. Transcriptomics and immunostaining suggest that these changes are accompanied by changes in expression and localisation of lipid and fatty acid transporter proteins, most notably fatty acid binding protein 5 (FABP5) in autophagy knockouts. Thus, maintaining autophagic activity at an advanced age may be necessary to maintain epidermal lipid homeostasis in mammals

    Autophagy Is Induced by UVA and Promotes Removal of Oxidized Phospholipids and Protein Aggregates in Epidermal Keratinocytes

    Get PDF
    The skin is exposed to environmental insults such as UV light that cause oxidative damage to macromolecules. A centerpiece in the defense against oxidative stress is the Nrf2 (nuclear factor (erythroid-derived-2)-like 2)-mediated transcriptional upregulation of antioxidant and detoxifying enzymes and the removal of oxidatively damaged material. Autophagy has an important role in the intracellular degradation of damaged proteins and entire organelles, but its role in the epidermis has remained elusive. Here, we show that both UVA and UVA-oxidized phospholipids induced autophagy in epidermal keratinocytes. Oxidative stressors induced massive accumulation of high-molecular-weight protein aggregates containing the autophagy adaptor protein p62/SQSTM1 in autophagy-deficient (autophagy-related 7 (ATG7) negative) keratinocytes. Strikingly, even in the absence of exogenous stress, the expression of Nrf2-dependent genes was elevated in autophagy-deficient keratinocytes. Furthermore, we show that autophagy-deficient cells contained significantly elevated levels of reactive oxidized phospholipids. Thus, our data demonstrate that autophagy is crucial for both the degradation of proteins and lipids modified by environmental UV stress and for limiting Nrf2 activity in keratinocytes. Lipids that promote inflammation and tissue damage because of their reactivity and signaling functions are commonly observed in aged and diseased skin, and thus targeting autophagy may be a promising strategy to counteract the damage promoted by excessive lipid oxidation
    corecore