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The skin is exposed to environmental insults such as UV light that cause oxidative damage to macromolecules.
A centerpiece in the defense against oxidative stress is the Nrf2 (nuclear factor (erythroid-derived-2)-like 2)-
mediated transcriptional upregulation of antioxidant and detoxifying enzymes and the removal of oxidatively
damaged material. Autophagy has an important role in the intracellular degradation of damaged proteins and
entire organelles, but its role in the epidermis has remained elusive. Here, we show that both UVA and UVA-
oxidized phospholipids induced autophagy in epidermal keratinocytes. Oxidative stressors induced massive
accumulation of high-molecular-weight protein aggregates containing the autophagy adaptor protein p62/
SQSTM1 in autophagy-deficient (autophagy-related 7 (ATG7) negative) keratinocytes. Strikingly, even in the
absence of exogenous stress, the expression of Nrf2-dependent genes was elevated in autophagy-deficient
keratinocytes. Furthermore, we show that autophagy-deficient cells contained significantly elevated levels of
reactive oxidized phospholipids. Thus, our data demonstrate that autophagy is crucial for both the degradation of
proteins and lipids modified by environmental UV stress and for limiting Nrf2 activity in keratinocytes. Lipids that
promote inflammation and tissue damage because of their reactivity and signaling functions are commonly
observed in aged and diseased skin, and thus targeting autophagy may be a promising strategy to counteract the
damage promoted by excessive lipid oxidation.
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INTRODUCTION
Environmental insults require dynamic responses by epider-
mal keratinocytes (KCs) to cope with damage while main-
taining the barrier between the organism and the
environment. UV irradiation is a common stressor of
the skin. Of the different qualities of UV radiation,
particularly UVA (315–400 nm) leads to oxidative modifica-
tions of proteins, nucleic acids, and lipids (Haywood et al.,
2011). Polyunsaturated lipids are highly susceptible to
oxidation and can give rise to various bioactive oxidized
lipid species (Porter, 1984). We have recently shown that
UVA irradiation of skin fibroblasts generates several
hundreds of different oxidation products deriving from the
most abundant polyunsaturated membrane phospholipids
(Gruber et al., 2012) that are the major source of
nonenzymatically generated oxidized lipid mediators
(Morrow et al., 1992). Importantly, distinct unfragmented
species of oxidized lipids are potent inducers of the
cytoprotective Nrf2 (NFE2L2 (nuclear factor (erythroid-
derived 2)-like 2)-dependent antioxidant response (Gruber
et al., 2010). Oxidative fragmentation of polyunsaturated
fatty acid moieties in phospholipids, however, also
gives rise to reactive compounds that form adducts with
proteins (Gu et al., 2003). For example, oxidation of
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1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine
(PAPC) gives rise to 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-
3-phosphocholine (POVPC) that can form adducts with lysine
residues on proteins, and highly reactive a-b-unsaturated
species (Podrez et al., 2002; Gugiu et al., 2006).
Accumulation of lipid peroxidation products and their
(aggregated) protein adducts is found in atherosclerosis
(Negre-Salvayre et al., 2010), neurodegenerative diseases
(Reed, 2011), as well as in photodamaged skin (Sander
et al., 2002; Widmer et al., 2006).

In response to oxidative stress by both UVA irradiation and
exposure to oxidized lipids, cells activate the Nrf2-driven
antioxidant response that provides cellular antioxidants and
detoxifying enzymes (Gao and Talalay, 2004; Hirota et al.,
2005; Gruber et al., 2010). At the same time, proteins
modified by oxidizing stressors are degraded by the protea-
some and autophagosomal/lysosomal pathways (Dunlop
et al., 2009). Macroautophagy degrades cargo that is too
large to enter the proteasome (Rubinsztein, 2006; Garcia-
Arencibia et al., 2010), which itself can be impaired by UV
damage (Bulteau et al., 2002). Autophagy is an intracellular
degradation mechanism that requires autophagy-related 7
(Atg7)–dependent formation of a membrane into which the
microtubule-associated protein 1 light chain 3 (LC3) inserts via
a phosphatidylethanolamine anchor (phosphatidylethanola-
mine-lipidated LC3 is called LC3-II hereafter). Cargo targeted
for degradation is sequestered and bound to LC3-II by
adaptor proteins, most notably p62 (also called SQSTM1
(sequestosome 1). The structure is completed by forming
spherical autophagosomes that then fuse to lysosomes,
resulting in the degradation of the cargo (reviewed in
Mizushima, 2007). In the liver (Komatsu et al., 2010) and
lungs (Inoue et al., 2011), a direct connection between the
Nrf2-driven antioxidant response and the autophagic stress
response was recently discovered; when autophagy is lost, the
autophagy adaptor p62 accumulates within the cell and
competes with KEAP1 (kelch-like ECH-associated protein 1)
for binding to Nrf2. The resulting constitutive release of
Nrf2 from its cytosolic anchor leads to overexpression
of p62 itself and of other Nrf2 target genes, causing
tissue damage rather than a protective response (Komatsu
et al., 2010).

We report here that UVA-1 (hereafter called UVA) exposure
of KCs generates unfragmented phospholipid oxidation pro-
ducts (e.g., phospholipid hydroperoxides (PL-OOH)) and
fragmented oxidized species, such as the prominent signal
mediator POVPC. Both exposure to UVA and treatment with
in vitro UVA-oxidized PAPC induce autophagy in KCs. KCs
deficient in autophagy due to deletion of Atg7 showed
defective clearance of the multifunctional adapter protein
SQSTM1/p62 and accumulation of stress-induced high-mole-
cular-weight protein complexes containing p62 (HMW-p62).
Despite upregulation of Nrf2-dependent antioxidant enzymes,
autophagy-deficient cells contained aberrantly high levels of
oxidized phospholipids (OxPLs). Thus, our studies reveal that
autophagy not only degrades HMW protein complexes but
also prevents the accumulation of OxPLs in UVA-stressed
epidermal KCs.

RESULTS
UVA induces phospholipid oxidation in KCs

To investigate whether UVA exposure induces oxidation of
phospholipids in KCs, we quantified OxPLs in extracts of
irradiated primary mouse KCs collected immediately after
irradiation. Selected oxidation products generated from phos-
phatidylcholines with palmitic or stearic acid at the sn-1
position and arachidonic or linoleic acid at the sn-2 position
(the latter prone to oxidation) were analyzed using HPLC–
tandem mass spectrometry. The data for each oxidized species
were normalized to the levels of the unoxidized precursor that
we had determined in parallel. We observed an UVA-induced
increase of both fragmented and unfragmented oxidized
molecular species (Figure 1). Among the accumulating lipid
species were the fragmented lipids POVPC and PONPC
(1-palmitoyl-2-(9-oxo)nonanoyl-sn-glycero-3-phosphocholine),
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Figure 1. UVA irradiation of primary murine keratinocytes leads to an

increase in the levels of oxidized phospholipids (OxPLs). Cells were exposed

to either 40 J cm�2 UVA irradiation (black bars) or were sham irradiated (gray

bars). The incubation was stopped by rinsing with phosphate-buffered saline

(PBS) containing diethylene triamine pentaacetic acid (2 mM) and butylated

hydroxytoluene (0.01%), followed by lysis in acidic methanol and liquid–

liquid extraction. Quantification of oxidized and unoxidized phospholipids

was performed using HPLC–tandem mass spectrometry (MS/MS) as described

in the Materials and Methods section. The data for OxPLs were normalized

to the levels of the corresponding unoxidized precursors and are presented

as the mean fold induction above control levels. Error bars indicate SD of

analytical triplicates (six biological replicates). *Po0.05. Lyso-PPC,

1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine; PEIPC, 1-palmitoyl-

2-(epoxy-isoprostane-E2)-sn-glycero-3-phosphorylcholine; PONPC, 1-palmitoyl-

2-(9-oxo)nonanoyl-sn-glycero-3-phosphocholine; POVPC, 1-palmitoyl-

2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine; SLPC-OOH, 1-stearoyl-

2-linoleoyl-sn-glycero-3-phosphocholine–phospholipid hydroperoxides.
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which result from oxidation of PAPC and PLPC (1-palmitoyl-2-
linoleoyl-sn-glycero-3-phosphocholine), respectively, and
can form covalent bonds with proteins as they contain
o-aldehydic groups (Ahmed et al., 2003). We also detected
a significant increase in the esterified hydroperoxides SLPC-
OOH and PLPC-OOH (Figure 1, see also Figure 5 and
Supplementary Figure S5 online). These, upon cleavage, give
rise to reactive carbonyl species like malondialdehyde and
4-hydroxynonenal (Esterbauer et al., 1991), which in turn
crosslink proteins and render them poorly degradable
(Burcham and Kuhan, 1997). Furthermore, PEIPC (1-palmitoyl-
2-(epoxy-isoprostane-E2)-sn-glycero-3-phosphorylcholine),
which is an agonist of Nrf2 and induces the antioxidant
response (Li et al., 2007), was increased. In contrast,
lysophospholipid (Lyso-PPC (1-palmitoyl-2-hydroxy-sn-
glycero-3-phosphocholine)) levels did not rise immediately
after irradiation, which is in agreement with our previous
findings in fibroblasts (Gruber et al., 2012). In summary, our
data show that exposure of KCs to UVA elevates the levels of
oxidized lipids that are able to modify cellular proteins and
stimulate Nrf2 signaling.

UVA and UVPAPC induce autophagy in KCs
To determine whether UVA irradiation itself and UV-oxidized
lipids can affect autophagy, we exposed primary murine KCs
to UVA or UVPAPC (PAPC oxidized in vitro by irradiation
with 80 J cm�2 of UVA-1). UVPAPC contains predominantly
unfragmented oxidized lipid species such as hydroperoxides,
hydroxides, and isoprostanoid modifications of the esterified
arachidonic acid (Gruber et al., 2007), which were also found
at increased levels in the irradiated KCs (see Figure 1). As
positive control for the induction of autophagy, we exposed
KCs to the mammalian target of rapamycin inhibitor rapamy-
cin (Lee et al., 2011). Several standard assays (Klionsky et al.,
2012) confirmed that autophagy was induced by these
treatments. Lipidation of the LC3 protein leading to its
conversion to LC3-II is an early key step in autophagosome
formation. As shown in Figure 2a, LC3 conversion was readily
detected by immunoblotting after treatment with rapamycin
and UVA (left panels), as well as with UVPAPC (right panels).
We next quantified autophagosomes in KCs expressing the
autophagy reporter protein green fluorescent protein (GFP)-
LC3 that labels autophagosomes (Mizushima et al., 2004).
When these KCs were cultured on chamber slides and
exposed to UVA, UVPAPC, or rapamycin, the number of
GFP-LC3-labeled autophagosomes (green puncta) per cell
and the number of cells with more than five puncta per
cell increased significantly upon all the three treatments
(Figure 2b–d). Moreover, autophagic flux was enhanced as
we observed increased cleavage of the LC3-GFP transgene in
stressed KCs (not shown). As previously demonstrated,
the singlet oxygen quencher sodium azide (NaN3) prevents
the UVA-mediated oxidation of PAPC (Gruber et al., 2007)
and UVA-dependent cell damage (Lamore et al., 2010).
When we applied NaN3 (10 mM) to KCs, UVA-induced auto-
phagy was inhibited by 70%, whereas rapamycin-induced
autophagy was not significantly altered (Supplementary
Figure S1 a, b online). Autophagy induction by UVPAPC

was inhibited by 31%. These data demonstrate that both UVA
and UVPAPC activate autophagy in KCs, and that UVA-
induced autophagy is at least partially dependent on singlet
oxygen.
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Figure 2. UVA and UV-oxidized phospholipids induce autophagy in murine

keratinocytes. (a) Keratinocytes were treated with 20 or 40 J cm�2 of UVA, 25

or 50mg ml�1 of UVPAPC (1-palmitoyl-2-arachidonoyl-sn-glycero-3-

phosphocholine (PAPC) oxidized in vitro by irradiation with 80 J cm� 2 of

UVA-1), and 0.5 or 1mM of rapamycin (Rapa), and harvested after 4 hours. Ctrl,

control. Cell extracts were analyzed by western blotting using an antibody

recognizing LC3 (protein 1 light chain 3). The accumulation of LC3-II indicates

the induction of autophagy. (b) Keratinocytes from green fluorescent protein

(GFP)-LC3 transgenic mice were treated with 40 J cm� 2 of UVA, 50mg ml� 1

UVPAPC, or 1mM rapamycin. At 6 hours after treatment, cells were fixed with

80% methanol and visualized by confocal laser scanning microscopy (LSM).

(c, d) Autophagosome quantification. The average number of GFP-LC3-positive

puncta/cell (c) and percentage of cells with more than five puncta (d) were

counted on the images obtained by LSM. Asterisks indicate significant

differences between sham-treated cells and cells treated with 1mM rapamycin,

40 J cm� 2 UVA, or 50mg ml�1 UVPAPC (*Po0.05; n¼ 250 cells per group).
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Protein aggregates accumulate in Atg7-deficient KCs
We hypothesized that KCs use autophagy to dispose of
modified or aggregated proteins that result from exposure to
oxidant stress. Protein aggregates targeted for autophagic
degradation are frequently conjugated to the autophagic cargo
adapter protein p62 and such aggregates can accumulate in
cells upon lipid stress (Monick et al., 2010). Thus, we
determined whether exposure to UVA and OxPL leads to the
formation of HMW-p62 complexes in KCs and whether these
are degraded through autophagy. The KCs used for this
experiment were isolated from the tails of mice with cre-
recombinase-targeted deletion of Atg7 (Komatsu et al., 2005),
driven by the keratin K14 promoter (K14-cre-Atg7; called Atg7
KO thereafter) (H. Rossiter et al., personal communication),
and their Cre-negative siblings (called wild type (WT)
thereafter). Autophagy was efficiently blocked in Atg7 KO
KCs (Supplementary Figure S2 online). We exposed both WT
and Atg7 KO KCs to UVA, UVPAPC, or rapamycin for 6, 24,
and 48 hours and performed immunoblots for p62 and b-actin.
As shown in Supplementary Figure S3 online (upper panel),
the stressors and rapamycin induced accumulation of p62 and
faint appearance of HMW-p62 already 6 hours after exposure
in WT KCs. After 24 hours, the HMW-p62 aggregates had
strongly accumulated in stressed Atg7 KO but not in WT KCs
(Supplementary Figure S3 online, middle panel). At 48 hours
after stress, HMW aggregates were still present in Atg7 KO KCs
treated with both doses and fluencies of UVA-1 and UVPAPC,
respectively, whereas in WT cells only high-dose UVPAPC
and high-fluency UVA resulted in a less-prominent persistence
of aggregates (Supplementary Figure S3 online, lower panel,
and Figure 3a). Accumulation of free p62 was slightly
enhanced in Atg7 KO cells compared with WT cells and
became more apparent upon further culture (Supplementary
Figure S3 online). Exposure to rapamycin enhanced the
accumulation of free p62 in Atg7 KO cells after 48 hours,
confirming defective autophagic flux in Atg7 KO cells and a
less prominent accumulation of HMW-p62. Exposure to the
unoxidized phospholipid di-myristoyl-PC or sham irradiation
did not lead to formation of HMW aggregates in WT cells. The
accumulation of free p62 and the slight but distinct accumula-
tion of HMW-p62 observed in sham irradiated or di-myristoyl-
phosphocholine treated Atg7 KO cells but not in WT cells are
compatible with constitutive basal autophagy proceeding in
cultured KCs. To confirm the findings of immunoblot analyses
at the cellular level, we cultured WT and Atg7 KO cells on
chamber slides and treated them as above and followed them
for 6, 24, and 48 hours. As p62-positive protein aggregates
can be polyubiquitinated (Bjorkoy et al., 2005), we
immunolabeled the cells for both p62 and polyubiquitin and
performed laser scanning microscopy (Figure 3b and
Supplementary Figure S4 online). The results of the immuno-
blot experiments were corroborated by the microscopic
analyses as p62-positive aggregates persisted after 24 and
48 hours in autophagy-deficient cells but not in WT cells
treated with 20 J cm�2 of UVA or 25mg ml�1 of UVPAPC
(Supplementary Figure S4 online and Figure 3b). Autophagy-
deficient KCs did not show increased apoptosis as compared
with the WT cells 48 hours after irradiation (not shown). The

polyubiquitin staining was also induced by the stressors, and
some, but not all, of the p62 aggregates persisting in autop-
hagy-deficient KCs were double positive and may represent
the so-called ‘‘p62-bodies’’ (Pankiv et al., 2007), large
inclusion bodies that can be degraded by autophagy. Taken
together, these results demonstrate that in KCs autophagy is
involved in removing protein aggregates induced by oxidant
stress.

Nrf2 target genes are upregulated in Atg7-deficient KCs

As we had observed higher levels of p62 protein in Atg7 KO as
compared with that in WT cells (Figure 3), and p62 is not only a
target but also an inducer of the Nrf2 signaling pathway
(Komatsu et al., 2010), we investigated whether Atg7 KO
cells express higher levels of Nrf2 target genes. To determine
this, we exposed the autophagy-competent and Atg7 KO KCs to
UVA or UVPAPC and performed relative quantitative PCR for
p62, GCLM (glutamate cysteine ligase modifier subunit), GCLC
(glutamate cysteine ligase catalytic subunit), and HO-1 (heme
oxygenase 1). As shown in Figure 4a–d, enhanced mRNA
expression of these Nrf2 targets was readily detected in Atg7
KO cells. In these cells, enhanced mRNA expression for p62,
GCLC, and HO-1 was evident already in the absence of
external stressors, whereas GCLM was strongly induced only
after exposure to the stressors. Furthermore, immunoblotting of
extracts from cells that had been treated with UVA or UVPAPC
showed an increase in both basal and induced levels of HO-1
protein in Atg7 KO as compared with that in WT cells. These
results indicate that even without stress, autophagy-deficient
KCs display enhanced transcription of Nrf2 targets, which is
further upregulated upon exposure to stressors.

Increased lipid oxidation is detectable in Atg7 KO KCs

The data presented above show that both UVA, which induces
a rise in intracellular OxPL, and externally added OxPL induce
autophagy, and autophagy deficiency leads to Nrf2-dependent
upregulation of cellular antioxidant enzymes. We next
tested whether the activation of Nrf2-induced antioxidant
responses in autophagy-deficient cells decreases the con-
sequences of oxidative stress and diminishes the levels of
OxPLs. To this end, we investigated the levels of oxidized
lipids in sham-treated and UVA-treated autophagy-deficient
and autophagy-competent KCs. Contrary to our hypothesis,
HPLC–tandem mass spectrometry analysis of OxPL showed
that autophagy deficiency was associated with enhanced
levels of fragmented (POVPC, PONPC, and PAzPC (1-palmi-
toyl-2-azelaoyl-sn-glycero-3-phosphocholine); Figure 5a, e,
and f) and unfragmented (PLPC-OOH and PEIPC; Figure 5b
and c) OxPLs. The difference was observed in unirradiated
cells and was even more prominent immediately after and
24 hours after irradiation with UVA. In contrast, lysopho-
spholipids, which are formed by phospholipase-mediated
hydrolysis of OxPLs, were decreased in the Atg7 KO extracts
(Figure 5d and Supplementary Figure S5d online). We
observed a close correlation between the changes in oxidized
PLs containing palmitic acid and structurally related ones that
contain stearic acid esterified to the sn-1 position (Figure 5 and
Supplementary Figure S5 online), supporting the validity of our
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findings. Taken together, these data suggest that autophagy
prevents accumulation of OxPLs in KCs.

DISCUSSION
In this study, we investigated the role of autophagy in the
oxidative stress response of epidermal KCs. Our results
demonstrate that epidermal KCs activate autophagy in
response to UVA and UV-oxidized phospholipids. Genetic
elimination of autophagy resulted in massive accumulation of
protein aggregates in stressed cells, elevation of Nrf2 target
gene expression, and strikingly, in a significant rise in various
oxidized species of phospholipids. Our findings imply a

central role for autophagy in the stress response; without
autophagy, the degradation of UV-modified molecules, i.e.,
oxidized lipids and aggregated protein, both of which con-
tribute to tissue damage, is impaired. The findings further
imply that also during homeostasis autophagy prevents accu-
mulation of oxidized phospholipids, as well as overexpression
of Nrf2 target genes in KCs.

This investigation of oxidized lipids in KCs is based on a
protocol for lipidomic analysis that allows to study the
abundance of up to several hundreds of oxidation products
of phosphatidylcholines in extracts from cells or tissues and to
determine ‘‘signatures’’ of oxidized phosphatidylcholines

WT Atg7 KO

UVA
a

b

Ctrl UVPAPC UVA Ctrl UVPAPC

40 20 50 25 40 20 50 25

p62

WT

p62 Ubi Merged p62 Ubi Merged

Ctrl

UVPAPC

25 μg ml–1

UVPAPC

50 μg ml–1

UVA

20 J cm–2

UVA

40 J cm–2

Atg7 KO

HMW
-p62

β-Actin

Figure 3. The clearance of protein aggregates is impaired in autophagy-deficient keratinocytes. Keratinocytes from wild-type (WT) and Atg7 (autophagy-related 7)

KO mice were either irradiated with UVA at 20 and 40 J cm� 2, respectively, or treated with 25 and 50mg ml�1 of UVPAPC (1-palmitoyl-2-arachidonoyl-sn-glycero-3-

phosphocholine (PAPC) oxidized in vitro by irradiation with 80 J cm�2 of UVA-1), respectively. After 48 hours, cells were fixed for microscopy and extracts for

western blot analysis were harvested. Sham-irradiated cells were used as control (Ctrl). (a) Cell extracts were subjected to western blot analysis with an antibody

recognizing p62 (also called SQSTM1 (sequestosome 1). The arrows indicate native p62 and the brackets indicate p62-reactive high-molecular-weight (HMW) protein

aggregates that ranged from 100 to 200 kD. WT and Atg7 KO samples were separated on one blot; the complete representative figure including treatment for 6 and

24 hours, as well as control treatment with di-myristoyl-phosphocholine, is shown in Supplementary Figure S3 online. (b) Keratinocytes subjected to the identical

treatments as in (a) were immunostained for p62 (green) and polyubiquitin (Ubi, red), as well as Hoechst 33342 (blue, nuclear), and visualized using confocal laser

scanning microscopy (scale bars¼ 10mm). Corresponding representative micrographs of cells stained for 6 and 24hours after treatment are shown in Supplementary

Figure S4 online.
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(OxPCs) generated by specific stressors. This method was
validated and used to show that irradiation of dermal
fibroblasts with UVA generates hundreds of oxidation pro-
ducts derived from the most abundant polyunsaturated
phospholipids (Gruber et al., 2012). Here, we studied the
effect of UVA irradiation and UV-oxidized phospholipids on
fragmented and unfragmented oxidized phospholipid species
on autophagy-competent and autophagy-deficient KCs. In WT
KCs, we found elevation of OxPC species after UV stress,
corroborating our earlier findings in human fibroblasts.
Among the UV-induced phospholipid species, we found
PEIPC, an agonist of Nrf2 signaling (Li et al., 2007),
POVPC, one of the UV-generated platelet-activating factor-
like lipids mediating photosensitivity (Yao et al., 2012), and
PL-OOH, which also mediates UV-induced cell signaling
(Wenk et al., 2004). Addition of UVPAPC (which contains
PEIPC and PL hydroperoxides) to KCs induced autophagy, as
did UVA irradiation of the cells. The finding that the singlet
oxygen quencher NaN3, which inhibits UVA-mediated
oxidation of PAPC(Gruber et al., 2007), strongly reduced
autophagy induction after UVA irradiation suggests that
singlet oxygen-dependent oxidation of lipids is an important
mechanism for induction of autophagy by UVA. UV-oxidized
lipids are increasingly recognized as signaling mediators that
convey cellular responses to oxidant stress in KCs
and fibroblasts (Konger et al., 2008; Gruber et al., 2010),
and our findings add induction of autophagy to the growing

list of biological responses induced by oxidized lipids
in the skin.

Another key finding of our study is that autophagy is directly
involved in the degradation of oxidized phospholipids. We
found that in Atg7 KO KCs, the basal and stress-induced levels
of fragmented and unfragmented phospholipids were strongly
increased, whereas the 1-palmitoyl- and 1-stearoyl-lyso-PC
levels were reduced. The mechanism by which autophagy
controls the levels of OxPCs is at the moment elusive. One
possible explanation is that a significant part of intracellular
OxPCs is normally degraded to lysophospholipids in lyso-
somes, which are rich in hydrolytic enzymes including
phospholipases (Murakami et al., 2011). It will be the aim of
future studies to determine whether the so-called ‘‘lipophagy,’’
similar to its role in hepatic lipid metabolism (Singh et al.,
2009), contributes to the major changes in lipid composition
of KCs during terminal differentiation within the epidermis.

The genetic suppression of autophagy caused an increase in
the expression of Nrf2-dependent genes in KCs. Previously,
deletion of autophagy in liver and in lung epithelial cells was
reported to hyperactivate Nrf2, resulting in the upregulation of
Nrf2 target genes and causing severe tissue damage (Komatsu
et al., 2010; Inoue et al., 2011) that could be prevented by
simultaneous deletion of Nrf2. In analogy to what has been
reported for the above cell types, the enhanced Nrf2 activity in
Atg7 KO KCs could be caused by the p62-Nrf2 feedback loop
(Jain et al., 2010), by reduced degradation of KEAP1 (Taguchi
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et al., 2012), and/or by a direct effect of OxPCs on Nrf2. The
individual contributions of each pathway remain to be
determined. In this context, it is interesting that studies of trans-
genic mice have shown that sustained high-level Nrf2 activity is
not protective but disturbs epidermal homeostasis (Schafer
et al., 2012). Autophagy may thus also be a mechanism to
limit epidermal Nrf2 activity in homeostasis or after stress.

We found that autophagy-deficient KCs accumulate HMW
protein aggregates positive for p62, and detected in these cells
increased immunostaining for polyubiquitin, which was
further enhanced after exposure to UVA and OxPL. Polyubi-
quitin positivity was present but not confined to p62-positive
structures. This suggests, in accordance with studies on
autophagy-deficient liver and brain (Riley et al., 2010), that
autophagy facilitates clearance of protein aggregates in KCs
after stress. It remains to be determined whether these
aggregates need to be ubiquitinated for clearance by
autophagy. At high levels of oxidative stress (40 J cm�2 UVA
or 50mg ml�1 of UVPAPC), HMW aggregates were observed
that persisted up to 48 hours after exposure to high doses of
UVA or UVPAPC even in WT KCs. This suggests that beyond a
certain threshold of oxidative stress, deposits are formed that
are poorly degradable by autophagy or that might even inhibit
autophagy, as has been reported for fibroblasts (Lamore and
Wondrak, 2012) and for lung macrophages exposed to
reactive carbonyl species (Monick et al., 2010).

Oxidative fragmentation of the polyunsaturated fatty acid
moieties in phospholipids produces free (unesterified)
reactive carbonyl compounds like 4-hydroxynonenaland mal-
ondialdehyde, as well as aldehydes that remain esterified to
the phospholipid backbone (e.g., POVPC), and are often
referred to as ‘‘core aldehydes’’ (Bochkov et al., 2010).
Proteins modified by such reactive lipids were detected not
only in several pathological conditions including atherosclero-
sis (Salomon et al., 2000) and Alzheimer’s disease (Calabrese
et al., 2006) but also in photodamaged skin (Sander et al.,
2002) where they contribute to age-related pigment and
lipofuscin (Grune and Davies, 2003; Widmer et al., 2006).

Our data have important implications for the understanding
of the role of OxPLs in skin physiology under homeostatic and
pathological conditions. OxPLs are recognized as danger-
associated molecular patterns by the innate immune system
(Weismann and Binder, 2012), which in turn regulate cytokine,
chemokine, and adhesion molecule synthesis (Bochkov et al.,
2010). UVA irradiation promotes formation of such lipid media-
tors in KCs and autophagy controls their abundance. In con-
clusion, our study adds autophagy to the list of ambiguous res-
ponses elicited by UVR in the skin (Krutmann et al., 2012), and it
suggests to target autophagy as a previously unreported approach
to control UV-induced photodamage and lipid oxidation.

MATERIALS AND METHODS
Mice and cell culture

Atg7-floxed mice and GFP-LC3 transgenic mice have been described

previously (Mizushima et al., 2004; Komatsu et al., 2005). K14-Cre

mice (strain Tg (Krt14-cre)1Amc/J) were obtained from the Jackson

Laboratory (Bar Harbor, MN). K14-Cre mice were crossed with Atg7-

floxed mice to yield Atg7 F/F (WT) and Atg7 F/F K14-Cre mice (Atg7

10
9
8
7
6
5
4
3
2
1

POVPC m/z: 594 →184 PEIPC m/z: 828 →184
4.5
4.0
3.5
3.0
2.5
2.0

1.5
1.0
0.5

F
ol

d 
in

cr
ea

se

* #

Atg7:
UVA:

+ + + + ––––
– – – –+ + + +

|-----0 Hours-----||----24 Hours-----|

|-----0 Hours-----||----24 Hours-----|

|-----0 Hours-----||----24 Hours-----| |-----0 Hours-----||----24 Hours-----|

|-----0 Hours-----| |----24 Hours----|

|-----0 Hours-----||----24 Hours----|

Atg7:
UVA:

+ + + +
+ +++

–
– –

– – –
––

*
#

*

#*

PLPC-OOH m/z: 790 →184 Iyso-PPC m/z: 496 →184
1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

7

6

5

4

3

2

1

F
ol

d 
in

cr
ea

se

Atg7:
UVA:

+ + + + ––––
– – – –+ + + +

Atg7:
UVA:

+ + + + ––––
– – – –+ + + +

Atg7:
UVA:

+ + + +
+ +++

–
– –

– – –
––

Atg7:
UVA:

+ + + +
+ +++

–
– –

– – –
––

12

10

8

6

4

2

9
8
7
6
5
4
3
2
1

F
ol

d 
in

cr
ea

se

PAzPC m/z: 666 →184 PONPC m/z: 650 →184

*
*

*#

#

*

*
*

*#

#

*#

*
#

*

Figure 5. The levels of oxidized phospholipids (OxPLs) are increased in

autophagy-deficient keratinocytes. (a–f) Primary keratinocytes from wild-type

(WT; black bars) and Atg7 (autophagy-related 7) KO (gray bars) mice were

seeded in six-well plates and exposed to either 40 J cm�2 UVA or sham treated.

Either immediately after exposure or after 24hours, cells were rinsed with

phosphate-buffered saline (PBS) containing diethylene triamine pentaacetic

acid (2 mM) and butylated hydroxytoluene (0.01%), followed by lysis in acidic

methanol and liquid–liquid extraction. Quantification of phospholipids was

performed using HPLC–tandem mass spectrometry (MS/MS) as described in the

Materials and Methods section. The data for OxPLs were normalized to the

levels of corresponding precursors and are presented as fold induction above

control levels. Error bars indicate SD of analytical triplicates. Asterisks indicate

significant differences of the corresponding signals in Atg7 KO versus WT cells,

and pound signs indicate significant differences in irradiated versus the

corresponding sham-treated cells (*Po0.05). The values used to calculate WT

samples at time point 0 hours for POVPC (1-palmitoyl-2-(5-oxovaleroyl)-sn-

glycero-3-phosphocholine), PEIPC (1-palmitoyl-2-(epoxy-isoprostane-E2)-sn-

glycero-3-phosphorylcholine), PONPC (1-palmitoyl-2-(9-oxo)nonanoyl-sn-

glycero-3-phosphocholine), and Lyso-PPC (1-palmitoyl-2-hydroxy-sn-glycero-

3-phosphocholine) are identical to those shown in Figure 1 and are added

here for completeness. Data for the corresponding 1-stearoyl–oxidized

phosphatidylcholines (OxPCs) are shown in Supplementary Figure S5 online.
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KO) (Sukseree et al., 2012) from which tail KCs were prepared as

described before (Rossiter et al., 2004). The cells were suspended in

keratinocyte growth medium (KGM; Lonza, Basel, Switzerland) and

plated in 12-well plates or imaging chambers (see below) coated

with collagen IV (Vitrogen, Palo Alto, CA) and subjected to the

treatments at 80% confluence.

Reagents, antibodies, and irradiation

UVPAPC was produced as described before (Gruber et al., 2007) by

irradiation of PAPC (Avanti, Alabaster, AL) with 80 J cm� 2 of UVA-1.

Rapamycin was acquired from Sigma (St Louis, MO). For

immunoblots, anti-p62 (BML-PW9860; Enzo, Farmingdale, NY),

anti-LC3 (GTX82986; GeneTex, Irvine, CA), anti-GFP (Abcam,

Cambridge, UK), and anti-b-Actin (B11V08; BioVision, Milpitas,

CA) were used. As secondary antibody, goat anti-rabbit IgG-HRP

(Bio-Rad Laboratories, Hercules, CA) or sheep anti-mouse IgG-HRP

(NA931V; GE, Pittsburgh, PA) was used. For immunofluo-

rescence studies, anti-p62 (MBL) and anti-ubiquitin (clone FK2,

BML-PW8810; Enzo) were used. Hoechst 33258 (Molecular Probes,

Leiden, The Netherlands) was used to label the nuclei. Irradiation was

performed with a Sellamed 3000 (Sellas, Ennepetal, Germany) UVA-1

device filtered for emission from 340 to 400 nm, and cells were kept

in phosphate-buffered saline at 25 1C for the duration of the treatment.

The irradiance of the source at a distance to the sample of 30 cm was

66 mW cm� 2. To reach a fluence of 40 J cm� 2, the samples were

irradiated for 10 minutes. Sham treatment (shielding otherwise equally

treated cells from irradiation) did not induce autophagy or influence

its inducibility by rapamycin (Supplementary Figure S1c online).

Fluorescence and immunofluorescence analysis. Cells were
grown on imaging chambers CG (PAA, Pasching, Austria). Cells
were fixed in 80% methanol and incubated overnight at 4 1C in
phosphate-buffered saline, pH 7.2, 2% BSA with the indicated
primary antibodies, followed by secondary antibodies conjugated
with Alexa Fluor 488 and 546 dyes (Molecular Probes). GFP-LC3
transgenic cells were stained with nuclear label. For imaging, an
LSM700 confocal laser microscope (Zeiss, Oberkochen, Ger-
many) was used. Puncta were quantified using IMAGE J freeware
(http://rsbweb.nih.gov/ij/) as in Mizushima et al. (2010. All the
images were counted under the same parameter settings. The
puncta counting analysis (n¼ 250 cells per group) was performed
by an observer blinded to the experimental condition.

Western blot

Mouse KCs were harvested with lysis buffer containing 50 mM Tris

(pH 7.4), 2% SDS, and protease inhibitor cocktail (Roche, Mannheim,

Germany) on ice and immediately sonicated. HO-1 immunoblotting

was performed as described previously (Gruber et al., 2007).

Quantitative PCR

RNA was isolated using the RNeasy 96 system (Invitrogen/Life

Technologies, Grand Island, NY), and 900 ng of total RNA was

reverse-transcribed with an iScript complementary DNA Synthesis Kit

(Bio-Rad). Quantitative PCR was performed using the LightCycler 480

and the LightCycler 480 SYBR Green I Master (Roche, Basel,

Switzerland). Expression of target genes was normalized to the

expression of b-2 microglobulin. Primer sequences are listed in

Supplementary Material S7 online.

Lipid analysis
Analysis of lipids was performed using liquid–liquid extraction

procedure, followed by quantification using mass spectrometry as

described by us recently (Gruber et al., 2012). Cells were washed

with phosphate-buffered saline, followed by addition of cold acidified

methanol and internal standard (dinonanoyl-phosphatidylcholine;

Avanti). Neutral lipids and fatty acids were removed by three

extractions with hexane. Analysis of phospholipids was performed

using reversed-phase chromatography, followed by online

electrospray ionization–tandem mass spectrometry procedure as

described (Gruber et al., 2012) at FTC-Forensic Toxicological

Laboratory (Vienna, Austria). Individual values were normalized to

the internal standard 1,2-dinonanoyl-sn-glycero-3-phosphocholine.

OxPCs produced from PAPC and PLPC were identified using

commercial standards. Products of SAPC (1-stearoyl-2-arachidonoyl-

sn-glycero-3-phosphocholine) and SLPC (1-stearoyl-2-linoleoyl-sn-

glycero-3-phosphocholine) were tentatively identified on the basis

of their values, presence in OxSAPC or OxSLPC, and characteristic

shift in retention time as compared with homologs containing

palmitoyl residues. Supplementary Figure S6 online shows a typical

example of an HPLC–tandem mass spectrometry chromatogram that

was used to quantify the peaks.

Statistical analysis

The unpaired Student’s t-test was used to analyze the results, and a

P-value of o0.05 was considered to indicate a statistically significant

difference.
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