3,858 research outputs found

    A simple low-SAR technique for chemical-shift selection with high-field spin-echo imaging

    No full text
    We have discovered a simple and highly robust method for removal of chemical shift artifact in spin-echo MR images, which simultaneously decreases the radiofrequency power deposition (specific absorption rate). The method is demonstrated in spin-echo echo-planar imaging brain images acquired at 7 T, with complete suppression of scalp fat signal. When excitation and refocusing pulses are sufficiently different in duration, and thus also different in the amplitude of their slice-select gradients, a spatial mismatch is produced between the fat slices excited and refocused, with no overlap. Because no additional radiofrequency pulse is used to suppress fat, the specific absorption rate is significantly reduced compared with conventional approaches. This enables greater volume coverage per unit time, well suited for functional and diffusion studies using spin-echo echo-planar imaging. Moreover, the method can be generally applied to any sequence involving slice-selective excitation and at least one slice-selective refocusing pulse at high magnetic field strengths. The method is more efficient than gradient reversal methods and more robust against inhomogeneities of the static (polarizing) field (B0)

    Quantum key distribution using non-classical photon number correlations in macroscopic light pulses

    Get PDF
    We propose a new scheme for quantum key distribution using macroscopic non-classical pulses of light having of the order 10^6 photons per pulse. Sub-shot-noise quantum correlation between the two polarization modes in a pulse gives the necessary sensitivity to eavesdropping that ensures the security of the protocol. We consider pulses of two-mode squeezed light generated by a type-II seeded parametric amplification process. We analyze the security of the system in terms of the effect of an eavesdropper on the bit error rates for the legitimate parties in the key distribution system. We also consider the effects of imperfect detectors and lossy channels on the security of the scheme.Comment: Modifications:added new eavesdropping attack, added more references Submitted to Physical Review A [email protected]

    Ion detection in the photoionization of a Rb Bose-Einstein condensate

    Full text link
    Two-photon ionization of Rubidium atoms in a magneto-optical trap and a Bose-Einstein condensate (BEC) is experimentally investigated. Using 100 ns laser pulses, we detect single ions photoionized from the condenstate with a 35(10)% efficiency. The measurements are performed using a quartz cell with external electrodes, allowing large optical access for BECs and optical lattices.Comment: 14 pages, 7 figure

    Lifetime determination of excited states in Cd-106

    Get PDF
    Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps

    Structural basis for c-di-AMP–dependent regulation of the bacterial stringent response by receptor protein DarB

    Get PDF
    The bacterial second messenger c-di-AMP controls essential cellular processes, including potassium and osmolyte homeostasis. This makes synthesizing enzymes and components involved in c-di-AMP signal transduction intriguing as potential targets for drug development. The c-di-AMP receptor protein DarB of Bacillus subtilis binds the Rel protein and triggers the Rel-dependent stringent response to stress conditions; however, the structural basis for this trigger is unclear. Here, we report crystal structures of DarB in the ligand-free state and of DarB complexed with c-di-AMP, 3â€Č3â€Č-cGAMP, and AMP. We show that DarB forms a homodimer with a parallel, head-to-head assembly of the monomers. We also confirm the DarB dimer binds two cyclic dinucleotide molecules or two AMP molecules; only one adenine of bound c-di-AMP is specifically recognized by DarB, while the second protrudes out of the donut-shaped protein. This enables DarB to bind also 3â€Č3â€Č-cGAMP, as only the adenine fits in the active site. In absence of c-di-AMP, DarB binds to Rel and stimulates (p)ppGpp synthesis, whereas the presence of c-di-AMP abolishes this interaction. Furthermore, the DarB crystal structures reveal no conformational changes upon c-di-AMP binding, leading us to conclude the regulatory function of DarB on Rel must be controlled directly by the bound c-di-AMP. We thus derived a structural model of the DarB–Rel complex via in silico docking, which was validated with mass spectrometric analysis of the chemically crosslinked DarB–Rel complex and mutagenesis studies. We suggest, based on the predicted complex structure, a mechanism of stringent response regulation by c-di-AMP

    Tension and compression in the cytoskeleton of PC 12 neurites.

    Full text link

    Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface

    Get PDF
    We have demonstrated a new method of generating pulses of freely propagating THz electromagnetic radiation. The resulting 380 fs pulses are the shortest directly measured THz pulses in free space to date and are more powerful than those generated by Hertzian dipoles or by resonant dipole antennas. Temporal features as short as 190 fs were observed on these THz radiation pulses and thereby, illustrate an ultrafast receiver response time.Peer reviewedElectrical and Computer Engineerin

    A Rydberg Quantum Simulator

    Full text link
    Following Feynman and as elaborated on by Lloyd, a universal quantum simulator (QS) is a controlled quantum device which reproduces the dynamics of any other many particle quantum system with short range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open system evolution. We investigate how laser excited Rydberg atoms in large spacing optical or magnetic lattices can provide an efficient implementation of a universal QS for spin models involving (high order) n-body interactions. This includes the simulation of Hamiltonians of exotic spin models involving n-particle constraints such as the Kitaev toric code, color code, and lattice gauge theories with spin liquid phases. In addition, it provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The key basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates via auxiliary Rydberg atoms, including a possible dissipative time step via optical pumping. This allows to mimic the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.Comment: 8 pages, 4 figure

    The physics of dipolar bosonic quantum gases

    Full text link
    This article reviews the recent theoretical and experimental advances in the study of ultracold gases made of bosonic particles interacting via the long-range, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases. The specific properties emerging from the dipolar interaction are emphasized, from the mean-field regime valid for dilute Bose-Einstein condensates, to the strongly correlated regimes reached for dipolar bosons in optical lattices.Comment: Review article, 71 pages, 35 figures, 350 references. Submitted to Reports on Progress in Physic
    • 

    corecore