458 research outputs found

    The Iowa Homemaker vol.3, no.11

    Get PDF
    Table of Contents Identity by Ruth Elaine Wilson, page 2 The Responsibility of American Women to Citizenship by Marcia M. Roberts, page 3 Hearth and Home by Amanda Jacobsen, page 4 A Parent “That Needeth Not to be Ashamed” by Thomas F. Vance, page 5 Corn – Greatest Crop of Iowa by Gertrude E. Murray, page 6 American Home Economics Association Meets by Lela Johnson, page 7 The Evolution of Home Economics at Iowa State by Ruth Elaine Wilson, page 7 Hints for the Spring Wardrobe by Grace L. Heidbreder and Helen Brennan, page 8 Etiquette for College Girl by Marcella Dewell, page 9 Who’s There and Where by Dryden Quist, page 1

    Pioglitazone Prevents Capillary Rarefaction in Streptozotocin-Diabetic Rats Independently of Glucose Control and Vascular Endothelial Growth Factor Expression

    Get PDF
    Background/Aims: Reduction of capillary network density occurs early in the development of metabolic syndrome and may be relevant for the precipitation of diabetes. Agonists of the peroxisome proliferator-activated receptor (PPAR)-gamma transcription factor are vasculoprotective, but their capacity for structural preservation of the microcirculation is unclear. Methods: Male Wistar rats were rendered diabetic by streptozotocin and treated with pioglitazone in chow for up to 12 weeks. Capillary density was determined in heart and skeletal muscle after platelet endothelial cell adhesion molecule-1 (PECAM-1) immunostaining. Hallmarks of apoptosis and angiogenesis were determined. Results: Capillary density deteriorated progressively in the presence of hyperglycemia (from 971/mm(2) to 475/mm(2) in quadriceps muscle during 13 weeks). Pioglitazone did not influence plasma glucose, left ventricular weight, or body weight but nearly doubled absolute and relative capillary densities compared to untreated controls (1.2 vs. 0.6 capillaries/myocyte in heart and 1.5 vs. 0.9 capillaries/myocyte in quadriceps muscle) after 13 weeks of diabetes. No antiapoptotic or angiogenic influence of pioglitazone was detected while a reduced expression of hypoxia-inducible factor-3 alpha and PPAR coactivator-1 alpha (PGC-1 alpha) mRNA as well as vascular endothelial growth factor (VEGF) protein possibly occurred as a consequence of improved vascularization. Conclusion: Pioglitazone preserves microvascular structure in diabetes independently of improvements in glycemic control and by a mechanism unrelated to VEGF-mediated angiogenesis. Copyright (C) 2012 S. Karger AG, Base

    Cosmogenic Production as a Background in Searching for Rare Physics Processes

    Full text link
    We revisit calculations of the cosmogenic production rates for several long-lived isotopes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using updated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H^{3}H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate potential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets.Comment: 11 pages, 4 figures, and 4 table

    The Iowa Homemaker vol.4, no.1

    Get PDF
    Table of Contents The Why of College Training for Motherhood by Lula R. Lancaster, page 3 Does Your Education Stop When You See a French Menu Card? by Katherine Goeppinger, page 4 April Showers by Ada Hayden, page 5 Better Homes by James Ford, page 6 All Is Not Silk That Rustles by Hazel B. McKibben, page 6 Make Your Own Bias Tape by Helen M. Green, page 7 Rejuvenating Our Homes by Lulu Robinson, page 8 Moronitis by H. B. Hawthorn, page 9 Unit Kitchens by Florence Busse, page 10 The Physically Fit Family by Grace Heidbreder, page 11 Early Spring Markets by Marvel Secor, page 11 Who’s There and Where by Dryden Quist, page 12 Editorial, page 13 The Eternal Question, page 14 Homemaker as Citizen, page 15 That Something Different by Rhea Fern Shultz, page 1

    Localisation of NMU1R and NMU2R in human and rat central nervous system and effects of neuromedin-U following central administration in rats

    Get PDF
    Rationale: Neuromedin-U (NmU) is an agonist at NMU1R and NMU2R. The brain distribution of NmU and its receptors, in particular NMU2R, suggests widespread central roles for NmU. In agreement, centrally administered NmU affects feeding behaviour, energy expenditure and pituitary output. Further central nervous system (CNS) roles for NmU warrant investigation. Objectives: To investigate the CNS role of NmU by mapping NMU1R and NMU2R mRNA and measuring the behavioural, endocrine, neurochemical and c-fos response to intracerebroventricular (i.c.v.) NmU. Methods: Binding affinity and functional potency of rat NmU was determined at human NMU1R and NMU2R. Expression of NMU1R and NMU2R mRNA in rat and human tissue was determined using semi-quantitative reverse-transcription polymerase chain reaction. In in-vivo studies, NmU was administered i.c.v. to male Sprague-Dawley rats, and changes in grooming, motor activity and pre-pulse inhibition (PPI) were assessed. In further studies, plasma endocrine hormones, [DOPAC + HVA]/[dopamine] and [5-HIAA]/[5-HT] ratios and levels of Fos-like immunoreactivity (FLI) were measured 20 min post-NmU (i.c.v.). Results: NmU bound to NMU1R (KI, 0.11±0.02 nM) and NMU2R (KI, 0.21±0.05 nM) with equal affinity and was equally active at NMU1R (EC50, 1.25±0.05 nM) and NMU2R (EC50, 1.10±0.20 nM) in a functional assay. NMU2R mRNA expression was found at the highest levels in the CNS regions of both rat and human tissues. NMU1R mRNA expression was restricted to the periphery of both species with the exception of the rat amygdala. NmU caused a marked increase in grooming and motor activity but did not affect PPI. Further, NmU decreased plasma prolactin but did not affect levels of corticosterone, luteinising hormone or thyroid stimulating hormone. NmU elevated levels of 5-HT in the frontal cortex and hypothalamus, with decreased levels of its metabolites in the hippocampus and hypothalamus, but did not affect dopamine function. NmU markedly increased FLI in the nucleus accumbens, frontal cortex and central amygdala. Conclusions: These data provide further evidence for widespread roles for NmU and its receptors in the brain

    Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering

    Get PDF
    Background and ObjectivesRecent studies fueled doubts as to whether all currently defined central disorders of hypersomnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New reliable biomarkers are needed, and the question arises of whether current diagnostic criteria of hypersomnolence disorders should be reassessed. The main aim of this data-driven observational study was to see whether data-driven algorithms would segregate narcolepsy type 1 and identify more reliable subgrouping of individuals without cataplexy with new clinical biomarkers.MethodsWe used agglomerative hierarchical clustering, an unsupervised machine learning algorithm, to identify distinct hypersomnolence clusters in the large-scale European Narcolepsy Network database. We included 97 variables, covering all aspects of central hypersomnolence disorders such as symptoms, demographics, objective and subjective sleep measures, and laboratory biomarkers. We specifically focused on subgrouping of patients without cataplexy. The number of clusters was chosen to be the minimal number for which patients without cataplexy were put in distinct groups.ResultsWe included 1,078 unmedicated adolescents and adults. Seven clusters were identified, of which 4 clusters included predominantly individuals with cataplexy. The 2 most distinct clusters consisted of 158 and 157 patients, were dominated by those without cataplexy, and among other variables, significantly differed in presence of sleep drunkenness, subjective difficulty awakening, and weekend-week sleep length difference. Patients formally diagnosed as having narcolepsy type 2 and idiopathic hypersomnia were evenly mixed in these 2 clusters.DiscussionUsing a data-driven approach in the largest study on central disorders of hypersomnolence to date, our study identified distinct patient subgroups within the central disorders of hypersomnolence population. Our results contest inclusion of sleep-onset REM periods in diagnostic criteria for people without cataplexy and provide promising new variables for reliable diagnostic categories that better resemble different patient phenotypes. Cluster-guided classification will result in a more solid hypersomnolence classification system that is less vulnerable to instability of single features

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Nr4a1-dependent non-classical monocytes are important for macrophage-mediated wound healing in the large intestine

    Get PDF
    IntroductionMacrophages play an important role in intestinal wound healing. However, the trajectories from circulating monocytes to gut macrophages are incompletely understood.MethodsTaking advantage of mice depleted for non-classical monocytes due to deficiency for the transcription factor Nr4a1, we addressed the relevance of non-classical monocytes for large intestinal wound healing using flow cytometry, in vivo wound healing assays and immunofluorescence.ResultsWe show that wound healing in Nr4a1-deficient mice is substantially delayed and associated with reduced peri-lesional presence of macrophages with a wound healing phenotype.DiscussionOur data suggest that non-classical monocytes are biased towards wound healing macrophages. These insights might help to understand, how targeting monocyte recruitment to the intestine can be used to modulate intestinal macrophage functions
    • …
    corecore