45 research outputs found

    Electron-phonon coupling in topological surface states: The role of polar optical modes

    Get PDF
    The use of topological edge states for spintronic applications could be severely hampered by limited lifetimes due to intrinsic many-body interactions, in particular electron-phonon coupling. Previous works to determine the intrinsic coupling strength did not provide a coherent answer. Here, the electron-phonon interaction in the metallic surface state of 3D topological insulators is revised within a first principles framework. For the archetypical cases of Bi2Se3 and Bi2Te3, we find an overall weak coupling constant of less than 0.15, but with a characteristic energy dependence. Derived electronic self-energies compare favorably with previous angle-resolved photoemission spectroscopy results. The prevailing coupling is carried by optical modes of polar character, which is weakly screened by the metallic surface state and can be reduced by doping into bulk bands. We do not find any indication of a strong coupling to the A1g mode or the presence of a Kohn anomaly in the surface phonon spectrum. The weak intrinsic electron-phonon coupling guarantees long-lived quasiparticles at elevated temperatures

    Proximity Eliashberg theory of electrostatic field-effect-doping in superconducting films

    Get PDF
    We calculate the effect of a static electric field on the critical temperature of a s-wave one band superconductor in the framework of proximity effect Eliashberg theory. In the weak electrostatic field limit the theory has no free parameters while, in general, the only free parameter is the thickness of the surface layer where the electric field acts. We conclude that the best situation for increasing the critical temperature is to have a very thin film of a superconducting material with a strong increase of electron-phonon (boson) constant upon charging.Comment: 9 pages, 5 figure

    Electron–phonon coupling and superconductivity in a 2D Tl–Pb compound on Si(111)

    Get PDF
    [EN] Electron-phonon interaction in a single-layer Tl-Pb compound on Si(111) is investigated within the density-functional theory and linear-response approach in the mixed-basis pseudopotential representation. It is found that phonon-induced scattering of electrons at the Fermi level is primarily determined by surface electronic states responsible for bonding at the interface and by low-energy, predominantly shear-vertical vibrations of adatoms. The contribution of substrate-localized vibrations involved in the electron-phonon scattering turns out to be small. We have also estimated the superconducting transition temperature T-c by solving the linearized gap equation of the Eliashberg theory. An analysis of phonon-mediated transitions for a number of electronic states in the Tl-Pb surface bands showed that the strength of the coupling varies with the binding energy, increasing as it approaches the Fermi level, and significantly depends on the surface band to which the state belongs.This work was supported by the University of the Basque Country (Grants no. GIC07-IT-366-07 and No. IT-756-13) and the Spanish Ministry of Science and Innovation (Grant no. FIS2016-75862-P). The authors acknowledge support by the state of Baden-Wurttemberg through bwHPC

    Ab initio lattice dynamics and electron-phonon coupling of Bi(111)

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).We present a comprehensive ab initio study of structural, electronic, lattice dynamical, and electron-phonon coupling properties of the Bi(111) surface within density functional perturbation theory. Relativistic corrections due to spin-orbit coupling are consistently taken into account. Changes of interatomic couplings are confined mostly to the first two bilayers, resulting in superbulk modes with frequencies higher than the optic bulk spectrum, and in an enhanced density of states at lower frequencies for atoms in the first bilayer. We give results for the momentum-dependent electron-phonon coupling of electronic states belonging to the two surface electronic bands along ΓM¯ which cross the Fermi energy. For larger momenta, the lower surface band exhibits a moderate electron-phonon coupling of about 0.45, which is larger than the coupling constant of bulk Bi. For momenta close to Γ¯, states of both surface bands show even stronger couplings because of interband transitions to bulk states near Γ¯ around the Fermi level. For these cases, the state-dependent Eliashberg functions exhibit pronounced peaks at low energy and strongly deviate in shape from a Debye-type spectrum, indicating that an extraction of the coupling strength from measured electronic self-energies based on this simple model is likely to fail.The work of M.A.O. and T.S.R. was partially funded by US Department of Energy, DE-FG02-07ER46354.Peer Reviewe

    Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice

    Get PDF
    Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research

    Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice.

    Get PDF
    Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research

    Bcl3 Couples Cancer Stem Cell Enrichment With Pancreatic Cancer Molecular Subtypes

    Get PDF
    [Background & Aims]: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. [Methods]: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. [Results]: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. [Conclusions]: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.This work was supported by the Deutsche Forschungsgemeinschaft (grants AL 1174/4-1, AL1174/4-2, and Collaborative Research Center 1321 “Modeling and Targeting Pancreatic Cancer” to Hana Algül; SFB824 Z2 to Katja Steiger), the Deutsche Krebshilfe (grant 111646 to Hana Algül), a Ramon y Cajal Merit Award from the Ministerio de Economía y Competitividad, Spain (to Bruno Sainz Jr), a Coordinated Grant from Fundación Asociación Española Contra el Cáncer (GC16173694BARB to Bruno Sainz Jr), funding from The Fero Foundation (to Bruno Sainz Jr), and a Proyecto de Investigacion de Salud, ISCIII, Spain (no. PI18/00757 to Bruno Sainz Jr). Jiaoyu Ai is supported by the “China Scholarship Council” grant program

    Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers and shows resistance to any therapeutic strategy used. Here we tested small-molecule inhibitors targeting chromatin regulators as possible therapeutic agents in PDAC. We show that JQ1, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, suppresses PDAC development in mice by inhibiting both MYC activity and inflammatory signals. The histone deacetylase (HDAC) inhibitor SAHA synergizes with JQ1 to augment cell death and more potently suppress advanced PDAC. Finally, using a CRISPR-Cas9–based method for gene editing directly in the mouse adult pancreas, we show that de-repression of p57 (also known as KIP2 or CDKN1C) upon combined BET and HDAC inhibition is required for the induction of combination therapy–induced cell death in PDAC. SAHA is approved for human use, and molecules similar to JQ1 are being tested in clinical trials. Thus, these studies identify a promising epigenetic-based therapeutic strategy that may be rapidly implemented in fatal human tumors

    Electron-phonon interaction in bulk Pb: Beyond the Fermi surface

    Get PDF
    The electron-phonon interaction in bulk Pb and the influence of spin-orbit coupling (SOC) on the pairing strength are investigated within the density-functional theory and linear-response approach in the mixed-basis pseudopotential representation. We find that the SOC-induced modifications of both electronic bands and lattice vibrations result in striking changes in the phonon-induced scattering of excited electrons (holes). The strength of the momentum-averaged electron-phonon interaction λ(E) ranges from 0 to 2.5 while the contribution to λ(E) from particular electronic states can even exceed 4. It is found that the coupling strength is exceedingly strong for phonon-induced transitions between electronic states of p and d symmetry. The electron-phonon coupling in Pb also shows a band dependence which, in particular, results in two different sets of electron-phonon coupling parameters on the two sheets of the Fermi surface. © 2012 American Physical Society.We acknowledge financial support of the University of the Basque Country UPV/EHU (Grant No. GIC07-IT-366-07), the Departamento de Educación del Gobierno Vasco, and the Spanish Ministerio de Ciencia e Innovación (Grant No. FIS2010-19609-C02-01).Peer Reviewe
    corecore