117 research outputs found
Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation
If the mass excess of neutron-deficient nuclei and their neutron-rich mirror
partners are both known, it can be shown that deviations of the Isobaric Mass
Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a
cubic term was probed by using the atomic mass of neutron-rich magnesium
isotopes measured using the TITAN Penning trap and the recently measured
proton-separation energies of Cl and Ar. The atomic mass of
Mg was found to be within 1.6 of the value stated in the Atomic
Mass Evaluation. The atomic masses of Mg were measured to be both
within 1, while being 8 and 34 times more precise, respectively. Using
the Mg mass excess and previous measurements of Cl we uncovered a
cubic coefficient of = 28(7) keV, which is the largest known cubic
coefficient of the IMME. This departure, however, could also be caused by
experimental data with unknown systematic errors. Hence there is a need to
confirm the mass excess of S and the one-neutron separation energy of
Cl, which have both come from a single measurement. Finally, our results
were compared to ab initio calculations from the valence-space in-medium
similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure
Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets
Using the Penning trap mass spectrometer TITAN, we performed the first direct
mass measurements of 20,21Mg, isotopes that are the most proton-rich members of
the A = 20 and A = 21 isospin multiplets. These measurements were possible
through the use of a unique ion-guide laser ion source, a development that
suppressed isobaric contamination by six orders of magnitude. Compared to the
latest atomic mass evaluation, we find that the mass of 21Mg is in good
agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements
reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times,
respectively, resulting in a significant departure from the expected behavior
of the isobaric multiplet mass equation in both the A = 20 and A = 21
multiplets. This presents a challenge to shell model calculations using either
the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving
interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure
Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae
The yeast Saccharomyces cerevisiae is a useful model organism for studying lead (Pb) toxicity. Yeast cells of a laboratory S. cerevisiae strain (WT strain) were incubated with Pb concentrations up to 1,000 μmol/l for 3 h. Cells exposed to Pb lost proliferation capacity without damage to the cell membrane, and they accumulated intracellular superoxide anion (O2 .−) and hydrogen peroxide (H2O2). The involvement of the mitochondrial electron transport chain (ETC) in the generation of reactive oxygen species (ROS) induced by Pb was evaluated. For this purpose, an isogenic derivative ρ0 strain, lacking mitochondrial DNA, was used. The ρ0 strain, without respiratory competence, displayed a lower intracellular ROS accumulation and a higher resistance to Pb compared to the WT strain. The kinetic study of ROS generation in yeast cells exposed to Pb showed that the production of O2 .− precedes the accumulation of H2O2, which is compatible with the leakage of electrons from the mitochondrial ETC. Yeast cells exposed to Pb displayed mutations at the mitochondrial DNA level. This is most likely a consequence of oxidative stress. In conclusion, mitochondria are an important source of Pb-induced ROS and, simultaneously, one of the targets of its toxicity.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013
Localized practices and globalized futures: challenges for Alaska coastal community youth
An article from Maritime Studies (2015) 14:
Collectivity at the prolate-oblate transition:the 2<sub>1</sub><sup>+</sup> lifetime of <sup>190</sup>W
The neutron-rich rare isotope 190W is discussed as a candidate for a prolate-oblate transitional nucleus with maximum γ-softness. The collectivity of this isotope is assessed for the first time by the measurement of the reduced E2 transition probability of its first 2+ state to the ground state. The experiment employed the FAst TIming Array (FATIMA), comprised of 36 LaBr3(Ce) scintillators, which was part of the DESPEC setup at GSI, Darmstadt. The 41+ and 21+ states of 190W were populated subsequently to the decay of its 127(12) μs isomeric Jπ = 10- state. The mean lifetime of the 21+ state was determined to be τ = 274(28) ps, which corresponds to a B(E2; 21+ → 01+) value of 95(10) W.u. The results motivated a revision of previous calculations within an energy-density functional-based interacting boson model-2 approach, yielding E2 transition properties and spectroscopic quadrupole moments for tungsten isotopes. From comparison to theory, the new data suggest that 190W is at the transition from prolate to oblate structure along the W isotopic chain, which had previously been discussed as a nuclear shape-phase transition
Broken seniority symmetry in the semimagic proton mid-shell nucleus <sup>95</sup>Rh
Lifetime measurements of low-lying excited states in the semimagic ( N = 50 ) nucleus 95Rh have been performed by means of the fast-timing technique. The experiment was carried out using γ -ray detector arrays consisting of LaBr3(Ce) scintillators and germanium detectors integrated into the DESPEC experimental setup commissioned for the Facility for Antiproton and Ion Research (FAIR) Phase-0, Darmstadt, Germany. The excited states in 95Rh were populated primarily via the β decays of 95Pd nuclei, produced in the projectile fragmentation of a 850 MeV/nucleon 124Xe beam impinging on a 4 g / cm2 9Be target. The deduced electromagnetic E2 transition strengths for the γ -ray cascade within the multiplet structure depopulating from the isomeric Iπ = 21 / 2+ state are found to exhibit strong deviations from predictions of standard shell model calculations which feature approximately conserved seniority symmetry. In particular, the observation of a strongly suppressed E2 strength for the 13 / 2+ → 9 / 2+ ground state transition cannot be explained by calculations employing standard interactions. This remarkable result may require revision of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations, and might also point to the need for including three-body forces in the Hamiltonian
The shape of the <i>T</i><sub>z</sub> = +1 nucleus <sup>94</sup>Pd and the role of proton-neutron interactions on the structure of its excited states
Reduced transition probabilities have been extracted between excited, yrast states in the N = Z + 2 nucleus 94Pd. The transitions of interest were observed following decays of the Iπ = 14+ , Ex = 2129-keV isomeric state, which was populated following the projectile fragmentation of a 124Xe primary beam at the GSI Helmholtzzentrum für Schwerionenforschung accelerator facility as part of FAIR Phase-0. Experimental information regarding the reduced E2 transition strengths for the decays of the yrast 8+ and 6+ states was determined following isomer-delayed Eγ1 − Eγ2 − △T2,1 coincidence method, using the LaBr3(Ce)-based FATIMA fast-timing coincidence gamma-ray array, which allowed direct determination of lifetimes of states in 94Pd using the Generalized Centroid Difference (GCD) method. The experimental value for the half-life of the yrast 8+ state of 755(106) ps results in a reduced transition probability of B(E2:8+ →6+ ) = 205+34 −25 e2fm4 , which enables a precise verification of shell-model calculations for this unique system, lying directly between the N = Z line and the N = 50 neutron shell closure. The determined B(E2) value provides an insight into the purity of (g9/2)n configurations in competition with admixtures from excitations between the (lower) N = 3 pf and (higher) N = 4 gds orbitals for the first time. The results indicate weak collectivity expected for near-zero quadrupole deformation and an increasing importance of the T = 0 proton-neutron interaction at N = 48
Fast-timing measurements in <sup>96</sup>Pd:improved accuracy for the lifetime of the 4<sup>+</sup><sub>1</sub> state
Direct lifetime measurements via γ–γ coincidences using the FATIMA fast-timing LaBr3(Ce) array were performed for the excited states below previously reported isomers. In the N = 50 semi-magic 96Pd nucleus, lifetimes below the I π = 8+ seniority isomer were addressed as a benchmark for further analysis. The results for the I π = 2+ and 4 + states confirm the published values. Increased accuracy for the lifetime value was achieved for the 4 + state.peerReviewe
- …