13 research outputs found

    CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer

    Get PDF
    DNA microarrays have the potential to classify tumors according to their transcriptome. Tissue microarrays (TMAs) facilitate the validation of biomarkers by offering a high-throughput approach to sample analysis. We reanalyzed a high profile breast cancer DNA microarray dataset containing 96 tumor samples using a powerful statistical approach, between group analyses. Among the genes we identified was centromere protein-F (CENP-F), a gene associated with poor prognosis. In a published follow-up breast cancer DNA microarray study, comprising 295 tumour samples, we found that CENP-F upregulation was significantly associated with worse overall survival (p < 0.001) and reduced metastasis-free survival (p < 0.001). To validate and expand upon these findings, we used 2 independent breast cancer patient cohorts represented on TMAs. CENP-F protein expression was evaluated by immunohistochemistry in 91 primary breast cancer samples from cohort I and 289 samples from cohort II. CENP-F correlated with markers of aggressive tumor behavior including ER negativity and high tumor grade. In cohort I, CENP-F was significantly associated with markers of CIN including cyclin E, increased telomerase activity, c-Myc amplification and aneuploidy. In cohort II, CENP-F correlated with VEGFR2, phosphorylated Ets-2 and Ki67, and in multivariate analysis, was an independent predictor of worse breast cancer-specific survival (p = 0.036) and overall survival (p = 0.040). In conclusion, we identified CENP-F as a biomarker associated with poor outcome in breast cancer and showed several novel associations of biological significance

    FKBPL:a marker of good prognosis in breast cancer

    Get PDF
    FK506-binding protein-like (FKBPL) has established roles as an anti-tumor protein, with a therapeutic peptide based on this protein, ALM201, shortly entering phase I/II clinical trials. Here, we evaluated FKBPL’s prognostic ability in primary breast cancer tissue, represented on tissue microarrays (TMA) from 3277 women recruited into five independent retrospective studies, using immunohistochemistry (IHC). In a meta-analysis, FKBPL levels were a significant predictor of BCSS; low FKBPL levels indicated poorer breast cancer specific survival (BCSS) (hazard ratio (HR) = 1.30, 95% confidence interval (CI) 1.14–1.49, p < 0.001). The prognostic impact of FKBPL remained significant after adjusting for other known prognostic factors (HR = 1.25, 95% CI 1.07–1.45, p = 0.004). For the sub-groups of 2365 estrogen receptor (ER) positive patients and 1649 tamoxifen treated patients, FKBPL was significantly associated with BCSS (HR = 1.34, 95% CI 1.13–1.58, p < 0.001, and HR = 1.25, 95% CI 1.04–1.49, p = 0.02, respectively). A univariate analysis revealed that FKBPL was also a significant predictor of relapse free interval (RFI) within the ER positive patient group, but it was only borderline significant within the smaller tamoxifen treated patient group (HR = 1.32 95% CI 1.05–1.65, p = 0.02 and HR = 1.23 95% CI 0.99–1.54, p = 0.06, respectively). The data suggests a role for FKBPL as a prognostic factor for BCSS, with the potential to be routinely evaluated within the clinic

    The emerging role of FK506-binding proteins as cancer biomarkers: a focus on FKBPL

    No full text
    FKBPs (FK506-binding proteins) have long been recognized as key regulators of the response to immunosuppressant drugs and as co-chaperones of steroid receptor complexes. More recently, evidence has emerged suggesting that this diverse protein family may also represent cancer biomarkers owing to their roles in cancer progression and response to treatment. FKBPL (FKBP-like) is a novel FKBP with roles in GR (glucocorticoid receptor), AR (androgen receptor) and ER (oestrogen receptor) signalling. FKBPL binds Hsp90 (heat-shock protein 90) and modulates translocation, transcriptional activation and phosphorylation of these steroid receptors. It has been proposed as a novel prognostic and predictive biomarker, where high levels predict for increased recurrence-free survival in breast cancer patients and enhanced sensitivity to endocrine therapy. Since this protein family has roles in a plethora of signalling pathways, its members represent novel prognostic markers and therapeutic targets for cancer diagnosis and treatment

    Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer.

    No full text
    The role of intercellular tight junctions in breast epithelia[ cells is traditionaliy thought to be in maintaining polarity and barrier function. However, claudin-4, a tight junction protein, is overexpressed in breast tumour cells compared to normal epithelial cells, which generally corresponds to a loss in polarity. The aim of this study was to investigate the distribution and potential clinical value of claudin-4 in breast cancer, and to evaluate its usefulness as a prognostic and predictive biomarker. Expression of claudin-4 was initially examined by Western blot analysis in a cohort of 88 breast tumours, and was found to correlate positively with tumour grade and negatively with ER. Claudin-4 expression was then evaluated by immunohistochemistry in a larger cohort of 299 tumours represented on a tissue microarray. Claudin-4 expression correlated positively with tumour grade and Hcr2, and negatively with ER. High claudin-4 expression was also associated with worse breast cancer-specific survival (p = 0.0031), recurrence-free survival (P = 0.025) and overall survival (p = 0.034). Multivariate analysis revealed that claudin-4 independently predicted survival in the entire cohort (HR 1.95; 95%CI 1.01-3.79; p = 0.047) and in the ER positive subgroup treated with adjuvant tamoxifen (FIR 4.34; 95%C1 1.14-16.53; p = 0.032). This relationship between increased claudin-4 expression and adverse outcome was validated at the mRNA level in a DNA microarray dataset of 295 breast tumours. We conclude that high levels of claudin-4 protein are associated with adverse outcome in breast cancer patients, including the subgroup of patients treated with adjuvant tamoxifen. (C) 2008 Wiley-Liss, Inc
    corecore