225 research outputs found

    Spinning Conformal Correlators

    Get PDF
    We develop the embedding formalism for conformal field theories, aimed at doing computations with symmetric traceless operators of arbitrary spin. We use an index-free notation where tensors are encoded by polynomials in auxiliary polarization vectors. The efficiency of the formalism is demonstrated by computing the tensor structures allowed in n-point conformal correlation functions of tensors operators. Constraints due to tensor conservation also take a simple form in this formalism. Finally, we obtain a perfect match between the number of independent tensor structures of conformal correlators in d dimensions and the number of independent structures in scattering amplitudes of spinning particles in (d+1)-dimensional Minkowski space.Comment: 46 pages, 3 figures; V2: references added; V3: tiny misprint corrected in (A.9

    Generalized Holographic Quantum Criticality at Finite Density

    Get PDF
    We show that the near-extremal solutions of Einstein-Maxwell-Dilaton theories, studied in ArXiv:1005.4690, provide IR quantum critical geometries, by embedding classes of them in higher-dimensional AdS and Lifshitz solutions. This explains the scaling of their thermodynamic functions and their IR transport coefficients, the nature of their spectra, the Gubser bound, and regulates their singularities. We propose that these are the most general quantum critical IR asymptotics at finite density of EMD theories.Comment: v4: Corrected the scaling equation for the conductivity in section 9.

    Comparison of Human Memory CD8 T Cell Responses to Adenoviral Early and Late Proteins in Peripheral Blood and Lymphoid Tissue

    Get PDF
    Treatment of invasive adenovirus (Ad) disease in hematopoietic stem cell transplant (SCT) recipients with capsid protein hexon-specific donor T cells is under investigation. We propose that cytotoxic T cells (CTLs) targeted to the late protein hexon may be inefficient in vivo because the early Ad protein E3-19K downregulates HLA class I antigens in infected cells. In this study, CD8+ T cells targeted to highly conserved HLA A2-restricted epitopes from the early regulatory protein DNA polymerase (P-977) and late protein hexon (H-892) were compared in peripheral blood (PB) and tonsils of naturally infected adults. In tonsils, epitope-specific pentamers detected a significantly higher frequency of P-977+CD8+ T cells compared to H-892+CD8+ T cells; this trend was reversed in PB. Tonsil epitope-specific CD8+ T cells expressed IFN-γ and IL-2 but not perforin or TNF-α, whereas PB T cells were positive for IFN-γ, TNF-α, and perforin. Tonsil epitope-specific T cells expressed lymphoid homing marker CCR7 and exhibited lower levels of the activation marker CD25 but higher proliferative potential than PB T cells. Finally, in parallel with the kinetics of mRNA expression, P-977-specific CTLs lysed targets as early as 8 hrs post infection. In contrast, H-892-specific CTLs did not kill unless infected fibroblasts were pretreated with IFN-γ to up regulate HLA class I antigens, and cytotoxicity was delayed until 16–24 hours. These data show that, in contrast to hexon CTLs, central memory type DNA polymerase CTLs dominate the lymphoid compartment and kill fibroblasts earlier after infection without requiring exogenous IFN-γ. Thus, use of CTLs targeted to both early and late Ad proteins may improve the efficacy of immunotherapy for life-threatening Ad disease in SCT recipients

    Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds.</p> <p>Methods</p> <p>Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25.</p> <p>Results</p> <p>It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer.</p> <p>Conclusion</p> <p>This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.</p

    PCR diagnostics and monitoring of adenoviral infections in hematopoietic stem cell transplantation recipients

    Get PDF
    After stem cell transplantation, human patients are prone to life-threatening opportunistic infections with a plethora of microorganisms. We report a retrospective study on 116 patients (98 children, 18 adults) who were transplanted in a pediatric bone marrow transplantation unit. Blood, urine and stool samples were collected and monitored for adenovirus (AdV) DNA using polymerase chain reaction (PCR) and real-time PCR (RT-PCR) on a regular basis. AdV DNA was detected in 52 (44.8%) patients, with mortality reaching 19% in this subgroup. Variables associated with adenovirus infection were transplantations from matched unrelated donors and older age of the recipient. An increased seasonal occurrence of adenoviral infections was observed in autumn and winter. Analysis of immune reconstitution showed a higher incidence of AdV infections during periods of low T-lymphocyte count. This study also showed a strong interaction between co-infections of AdV and BK polyomavirus in patients undergoing hematopoietic stem cell transplantations

    Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia

    Get PDF
    Nitric oxide (NO) is an important regulator of renal transport processes. In the present study, we investigated the role of NO, produced by inducible NO synthase (iNOS), in the regulation of renal ATP-binding cassette (ABC) transporters in vivo during endotoxemia. Wistar–Hannover rats were injected with lipopolysaccharide (LPS+) alone or in combination with the iNOS inhibitor, aminoguanidine. Controls received detoxified LPS (LPS−). After LPS+, proximal tubular damage and a reduction in renal function were observed. Furthermore, iNOS mRNA and protein, and the amount of NO metabolites in plasma and urine, increased compared to the LPS− group. Coadministration with aminoguanidine resulted in an attenuation of iNOS induction and reduction of renal damage. Gene expression of 20 ABC transporters was determined. After LPS+, a clear up-regulation in Abca1, Abcb1/P-glycoprotein (P-gp), Abcb11/bile salt export pump (Bsep), and Abcc2/multidrug resistance protein (Mrp2) was found, whereas Abcc8 was down-regulated. Up-regulation of Abcc2/Mrp2 was accompanied by enhanced calcein excretion. Aminoguanidine attenuated the effects on transporter expression. Our data indicate that NO, produced locally by renal iNOS, regulates the expression of ABC transporters in vivo. Furthermore, we showed, for the first time, expression and subcellular localization of Abcb11/Bsep in rat kidney

    Circulating levels of insulin-like growth factor-I (IGF-I) correlate with disease status in leprosy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caused by <it>Mycobacterium leprae </it>(ML), leprosy presents a strong immune-inflammatory component, whose status dictates both the clinical form of the disease and the occurrence of reactional episodes. Evidence has shown that, during the immune-inflammatory response to infection, the growth hormone/insulin-like growth factor-I (GH/IGF-I) plays a prominent regulatory role. However, in leprosy, little, if anything, is known about the interaction between the immune and neuroendocrine systems.</p> <p>Methods</p> <p>In the present retrospective study, we measured the serum levels of IGF-I and IGBP-3, its major binding protein. These measurements were taken at diagnosis in nonreactional borderline tuberculoid (NR BT), borderline lepromatous (NR BL), and lepromatous (NR LL) leprosy patients in addition to healthy controls (HC). LL and BL patients who developed reaction during the course of the disease were also included in the study. The serum levels of IGF-I, IGFBP-3 and tumor necrosis factor-alpha (TNF-α) were evaluated at diagnosis and during development of reversal (RR) or erythema nodosum leprosum (ENL) reaction by the solid phase, enzyme-labeled, chemiluminescent-immunometric method.</p> <p>Results</p> <p>The circulating IGF-I/IGFBP-3 levels showed significant differences according to disease status and occurrence of reactional episodes. At the time of leprosy diagnosis, significantly lower levels of circulating IGF-I/IGFBP-3 were found in NR BL and NR LL patients in contrast to NR BT patients and HCs. However, after treatment, serum IGF-I levels in BL/LL patients returned to normal. Notably, the levels of circulating IGF-I at diagnosis were low in 75% of patients who did not undergo ENL during treatment (NR LL patients) in opposition to the normal levels observed in those who suffered ENL during treatment (R LL patients). Nonetheless, during ENL episodes, the levels observed in RLL sera tended to decrease, attaining similar levels to those found in NR LL patients. Interestingly, IGF-I behaved contrary to what was observed during RR episodes in R BL patients.</p> <p>Conclusions</p> <p>Our data revealed important alterations in the IGF system in relation to the status of the host immune-inflammatory response to ML while at the same time pointing to the circulating IGF-I/IGFBP-3 levels as possible predictive biomarkers for ENL in LL patients at diagnosis.</p

    Wnt, Hedgehog and Junctional Armadillo/β-Catenin Establish Planar Polarity in the Drosophila Embryo

    Get PDF
    To generate specialized structures, cells must obtain positional and directional information. In multi-cellular organisms, cells use the non-canonical Wnt or planar cell polarity (PCP) signaling pathway to establish directionality within a cell. In vertebrates, several Wnt molecules have been proposed as permissible polarity signals, but none has been shown to provide a directional cue. While PCP signaling components are conserved from human to fly, no PCP ligands have been reported in Drosophila. Here we report that in the epidermis of the Drosophila embryo two signaling molecules, Hedgehog (Hh) and Wingless (Wg or Wnt1), provide directional cues that induce the proper orientation of Actin-rich structures in the larval cuticle. We further find that proper polarity in the late embryo also involves the asymmetric distribution and phosphorylation of Armadillo (Arm or β-catenin) at the membrane and that interference with this Arm phosphorylation leads to polarity defects. Our results suggest new roles for Hh and Wg as instructive polarizing cues that help establish directionality within a cell sheet, and a new polarity-signaling role for the membrane fraction of the oncoprotein Arm

    Bounds on OPE coefficients in 4D Conformal Field Theories

    Get PDF
    We numerically study the crossing symmetry constraints in 4D CFTs, using previously introduced algorithms based on semidefinite programming. We study bounds on OPE coefficients of tensor operators as a function of their scaling dimension and extend previous studies of bounds on OPE coefficients of conserved vector currents to the product groups SO(N) 7SO(M). We also analyze the bounds on the OPE coefficients of the conserved vector currents associated with the groups SO(N), SU(N) and SO(N) 7SO(M) under the assumption that in the singlet channel no scalar operator has dimension less than four, namely that the CFT has no relevant deformations. This is motivated by applications in the context of composite Higgs models, where the strongly coupled sector is assumed to be a spontaneously broken CFT with a global symmetry. \ua9 The Authors
    corecore